In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?What exactly does 'Some' mean in Logic?Can someone clear up this semantic proof of quantification logic?A question about statements and conclusionWhat does the truth-value of a material implication represent?Are “All A is B” and “If A then B” always logically equivalent?Predicate Logic - Existential EliminationPredicate Logic - Universal IntroductionIs Ross' paradox really a paradox?Can classical logic have deduction with infinite stepsCan anyone tell which one of these sentences are materially implies(implication) and logically implies(implication)?Incorrect statement in Suppes' Introduction to Logic

Should I hang doors before or after drywall?

The work of mathematicians outside their professional environment

An example of a "regular poset" which does not belong to a convex polytope

How does Donald Trump manage to remain so popular over a rather long period of time?

How to tension rope between two trees?

How to get a smooth, uniform ParametricPlot of a 2D Region?

Can 35 mm film which went through a washing machine still be developed?

Does python reuse repeated calculation results?

Determine the Winner of a Game of Australian Football

In what sense is SL(2,q) "very far from abelian"?

Anonymous reviewer disclosed his identity. Should I thank him by name?

Should I be able to see patterns in a HS256 encoded JWT?

Calculate the price at time t=0

Using 4K Skyrim Textures when running 1920 x 1080 display resolution?

Tikz diagonal filling pattern

Would Great Old Ones care about the Blood War?

Coffee Grounds and Gritty Butter Cream Icing

How fast are we moving relative to the CMB?

What benefits are there to blocking most search engines?

Search for something difficult to count/estimate

Does the DOJ's declining to investigate the Trump-Zelensky call ruin the basis for impeachment?

How to catch creatures that can predict the next few minutes?

What are the limits on an impeached and not convicted president?

How to calculate Limit of this sequence



In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?


What exactly does 'Some' mean in Logic?Can someone clear up this semantic proof of quantification logic?A question about statements and conclusionWhat does the truth-value of a material implication represent?Are “All A is B” and “If A then B” always logically equivalent?Predicate Logic - Existential EliminationPredicate Logic - Universal IntroductionIs Ross' paradox really a paradox?Can classical logic have deduction with infinite stepsCan anyone tell which one of these sentences are materially implies(implication) and logically implies(implication)?Incorrect statement in Suppes' Introduction to Logic






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;

.everyonelovesstackoverflowposition:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;








6















I am having a discussion whether 'some' can also imply 'all'. The definition for some, 'an unspecified number or amount of people or things' seems to leave room for this interpretation.



Discussion follows on the following statements:



1. All newspaper readers are reasonable people.



2. Some newspaper readers are criminal.



The question is whether we can validly derive this conclusion:



Not all reasonable people are criminal










share|improve this question





















  • 1





    "seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

    – Acccumulation
    Apr 16 at 21:51






  • 2





    In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

    – Polygnome
    Apr 17 at 11:42

















6















I am having a discussion whether 'some' can also imply 'all'. The definition for some, 'an unspecified number or amount of people or things' seems to leave room for this interpretation.



Discussion follows on the following statements:



1. All newspaper readers are reasonable people.



2. Some newspaper readers are criminal.



The question is whether we can validly derive this conclusion:



Not all reasonable people are criminal










share|improve this question





















  • 1





    "seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

    – Acccumulation
    Apr 16 at 21:51






  • 2





    In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

    – Polygnome
    Apr 17 at 11:42













6












6








6


1






I am having a discussion whether 'some' can also imply 'all'. The definition for some, 'an unspecified number or amount of people or things' seems to leave room for this interpretation.



Discussion follows on the following statements:



1. All newspaper readers are reasonable people.



2. Some newspaper readers are criminal.



The question is whether we can validly derive this conclusion:



Not all reasonable people are criminal










share|improve this question
















I am having a discussion whether 'some' can also imply 'all'. The definition for some, 'an unspecified number or amount of people or things' seems to leave room for this interpretation.



Discussion follows on the following statements:



1. All newspaper readers are reasonable people.



2. Some newspaper readers are criminal.



The question is whether we can validly derive this conclusion:



Not all reasonable people are criminal







logic quantification






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 23 at 8:57









Ryder

2,12712 silver badges30 bronze badges




2,12712 silver badges30 bronze badges










asked Apr 16 at 18:59









6thsense6thsense

655 bronze badges




655 bronze badges










  • 1





    "seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

    – Acccumulation
    Apr 16 at 21:51






  • 2





    In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

    – Polygnome
    Apr 17 at 11:42












  • 1





    "seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

    – Acccumulation
    Apr 16 at 21:51






  • 2





    In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

    – Polygnome
    Apr 17 at 11:42







1




1





"seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

– Acccumulation
Apr 16 at 21:51





"seems to leave room for this interpretation." How so? "Is valid..." I take it you are asking whether the claims follows, rather than whether it is valid?

– Acccumulation
Apr 16 at 21:51




2




2





In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

– Polygnome
Apr 17 at 11:42





In natural language, "some" usually means "at least one, but not all". In formal language, ∃ means "at least one". if you drop the notion that ∃ means "some" and always only read ∃ as "there exists at least one", things clear up quickly. "Some" with the meaning of "at least one, but not all" is modeled not by ∃, but by ∃x ∧ ¬∀x.

– Polygnome
Apr 17 at 11:42










4 Answers
4






active

oldest

votes


















15
















"Some" does not exclude "all", but you cannot deduce "all" from "some".



Having said that, the above argument is not valid.



From premises 1 and 2 we can derive :




Some reasonable people are criminal




that is equivalent to : Not all reasonable people are not criminal.




Having said that, from "Some reasonable people are criminal" we cannot conclude by logic alone that "All reasonable people are criminal".



But we cannot exclude it either, i.e. we cannot state that "Not all reasonable people are criminal".






share|improve this answer






















  • 2





    I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

    – Federico Poloni
    Apr 16 at 22:04











  • @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

    – Mauro ALLEGRANZA
    Apr 17 at 6:17











  • @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

    – Flater
    Apr 17 at 15:01












  • @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

    – Flater
    Apr 17 at 15:05












  • @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

    – Federico Poloni
    Apr 17 at 15:39



















4

















Some newspaper readers are criminal




This means that at least one newspaper reader is a criminal. It can be more, it can even be all of them. We do not know. But at least one is.




All newspaper readers are reasonable people




All of the newspaper readers are reasonable people. Because at least one of the readers was a criminal, we must have one reasonable criminal.




Not all reasonable people are criminal




This is something we can't tell.



  1. We do not know how many of the reasonable readers are criminals. It could be all of them, or it could be just one.

  2. We only know that all newspaper readers are reasonable. But... there might also be other reasonable people who do not read newspapers. We do not have information about this.

So no, we can't tell if all reasonable people are criminals by this logic.






share|improve this answer




















  • 1





    Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

    – christo183
    Apr 17 at 6:52






  • 1





    @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

    – Opifex
    Apr 17 at 6:56







  • 1





    No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

    – christo183
    Apr 17 at 8:46



















3
















Rewrite the phrases in a more formal-like manner as



1. For all x, N(x) implies R(x)



2. There exists x, N(x) and C(x)



And notice these do imply there are reasonable criminals, ie,



There exists x, R(x) and C(x)



Now, "Not all reasonable people are criminal" would be



Not for all x, R(x) implies C(x)



which is (classically) equivalent to



There exists x, R(x) and not C(x)



But it's easy to see one can construct a model with a single individual possessing the three predicates N, R and C, which satisfies the first three phrases, but not the last two






share|improve this answer




















  • 1





    If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

    – Federico Poloni
    Apr 17 at 6:31



















1

















  1. All newspaper readers are reasonable people.


  2. Some newspaper readers are criminal.


... [Thus] Not all reasonable people are criminal




This syllogism is AIO in the third figure:



  1. All N are R.


  2. Some N are C.


Thus: Some R are not C.



The syllogism AIO-3 is invalid for two reasons. (1) A term (C) which is distributed in the conclusion is not distributed in the premise. (2) When the conclusion is negative, there must be exactly one negative premise. Here, both premises are positive.






share|improve this answer


























    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "265"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );














    draft saved

    draft discarded
















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61879%2fin-predicate-logic-does-existential-quantification-%25e2%2588%2583-include-universal-quanti%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    15
















    "Some" does not exclude "all", but you cannot deduce "all" from "some".



    Having said that, the above argument is not valid.



    From premises 1 and 2 we can derive :




    Some reasonable people are criminal




    that is equivalent to : Not all reasonable people are not criminal.




    Having said that, from "Some reasonable people are criminal" we cannot conclude by logic alone that "All reasonable people are criminal".



    But we cannot exclude it either, i.e. we cannot state that "Not all reasonable people are criminal".






    share|improve this answer






















    • 2





      I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

      – Federico Poloni
      Apr 16 at 22:04











    • @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

      – Mauro ALLEGRANZA
      Apr 17 at 6:17











    • @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

      – Flater
      Apr 17 at 15:01












    • @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

      – Flater
      Apr 17 at 15:05












    • @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

      – Federico Poloni
      Apr 17 at 15:39
















    15
















    "Some" does not exclude "all", but you cannot deduce "all" from "some".



    Having said that, the above argument is not valid.



    From premises 1 and 2 we can derive :




    Some reasonable people are criminal




    that is equivalent to : Not all reasonable people are not criminal.




    Having said that, from "Some reasonable people are criminal" we cannot conclude by logic alone that "All reasonable people are criminal".



    But we cannot exclude it either, i.e. we cannot state that "Not all reasonable people are criminal".






    share|improve this answer






















    • 2





      I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

      – Federico Poloni
      Apr 16 at 22:04











    • @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

      – Mauro ALLEGRANZA
      Apr 17 at 6:17











    • @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

      – Flater
      Apr 17 at 15:01












    • @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

      – Flater
      Apr 17 at 15:05












    • @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

      – Federico Poloni
      Apr 17 at 15:39














    15














    15










    15









    "Some" does not exclude "all", but you cannot deduce "all" from "some".



    Having said that, the above argument is not valid.



    From premises 1 and 2 we can derive :




    Some reasonable people are criminal




    that is equivalent to : Not all reasonable people are not criminal.




    Having said that, from "Some reasonable people are criminal" we cannot conclude by logic alone that "All reasonable people are criminal".



    But we cannot exclude it either, i.e. we cannot state that "Not all reasonable people are criminal".






    share|improve this answer















    "Some" does not exclude "all", but you cannot deduce "all" from "some".



    Having said that, the above argument is not valid.



    From premises 1 and 2 we can derive :




    Some reasonable people are criminal




    that is equivalent to : Not all reasonable people are not criminal.




    Having said that, from "Some reasonable people are criminal" we cannot conclude by logic alone that "All reasonable people are criminal".



    But we cannot exclude it either, i.e. we cannot state that "Not all reasonable people are criminal".







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Apr 17 at 9:37

























    answered Apr 16 at 19:11









    Mauro ALLEGRANZAMauro ALLEGRANZA

    29.3k2 gold badges20 silver badges69 bronze badges




    29.3k2 gold badges20 silver badges69 bronze badges










    • 2





      I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

      – Federico Poloni
      Apr 16 at 22:04











    • @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

      – Mauro ALLEGRANZA
      Apr 17 at 6:17











    • @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

      – Flater
      Apr 17 at 15:01












    • @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

      – Flater
      Apr 17 at 15:05












    • @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

      – Federico Poloni
      Apr 17 at 15:39













    • 2





      I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

      – Federico Poloni
      Apr 16 at 22:04











    • @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

      – Mauro ALLEGRANZA
      Apr 17 at 6:17











    • @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

      – Flater
      Apr 17 at 15:01












    • @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

      – Flater
      Apr 17 at 15:05












    • @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

      – Federico Poloni
      Apr 17 at 15:39








    2




    2





    I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

    – Federico Poloni
    Apr 16 at 22:04





    I'm not sure why this answer has been upvoted and accepted, because it doesn't work. The fact that you can prove a certain statement B from the premises does not imply anything on the validity (and provability) of statement A.

    – Federico Poloni
    Apr 16 at 22:04













    @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

    – Mauro ALLEGRANZA
    Apr 17 at 6:17





    @FedericoPoloni - thnaks for your comment. I've highlighted the fact that the argument is not valid (and not the statement).

    – Mauro ALLEGRANZA
    Apr 17 at 6:17













    @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

    – Flater
    Apr 17 at 15:01






    @FedericoPoloni If you assume that "Some newspaper readers are criminal" conclusively means "less than all"; then there is at least one reader who is not criminal, at which point your conclusion is correct: at least one reader (and thus reasonable person) is not criminal, which means that not all reasonable people are criminal (since we know of at least one exception, the person who made you say "some" instead of "all"). However, in logic, "some" does not explicitly specify that it is definitely less than all. In everyday language it does, but not in logic.

    – Flater
    Apr 17 at 15:01














    @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

    – Flater
    Apr 17 at 15:05






    @FedericoPoloni [..] Which means that in logic, "Some newspaper readers are criminal" includes the possibility that all readers are criminal. And because this is a possibility, "Not all readers are criminal" is not provably true (it is false in the case where all readers happen to be criminals). And if that's not true, then "Not all reasonable people are criminal" can also not be provably true.

    – Flater
    Apr 17 at 15:05














    @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

    – Federico Poloni
    Apr 17 at 15:39






    @Flater I'm not sure I get your point. It looks like you are addressing another comment of mine, and you are trying to explain me how "some" is used in propositional logic vs everyday language. I am familiar with that; in my other comment I was simply pointing out that this subtlety is (in my view) the source of OP's confusion. What you write here should probably go inside an answer, then.

    – Federico Poloni
    Apr 17 at 15:39














    4

















    Some newspaper readers are criminal




    This means that at least one newspaper reader is a criminal. It can be more, it can even be all of them. We do not know. But at least one is.




    All newspaper readers are reasonable people




    All of the newspaper readers are reasonable people. Because at least one of the readers was a criminal, we must have one reasonable criminal.




    Not all reasonable people are criminal




    This is something we can't tell.



    1. We do not know how many of the reasonable readers are criminals. It could be all of them, or it could be just one.

    2. We only know that all newspaper readers are reasonable. But... there might also be other reasonable people who do not read newspapers. We do not have information about this.

    So no, we can't tell if all reasonable people are criminals by this logic.






    share|improve this answer




















    • 1





      Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

      – christo183
      Apr 17 at 6:52






    • 1





      @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

      – Opifex
      Apr 17 at 6:56







    • 1





      No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

      – christo183
      Apr 17 at 8:46
















    4

















    Some newspaper readers are criminal




    This means that at least one newspaper reader is a criminal. It can be more, it can even be all of them. We do not know. But at least one is.




    All newspaper readers are reasonable people




    All of the newspaper readers are reasonable people. Because at least one of the readers was a criminal, we must have one reasonable criminal.




    Not all reasonable people are criminal




    This is something we can't tell.



    1. We do not know how many of the reasonable readers are criminals. It could be all of them, or it could be just one.

    2. We only know that all newspaper readers are reasonable. But... there might also be other reasonable people who do not read newspapers. We do not have information about this.

    So no, we can't tell if all reasonable people are criminals by this logic.






    share|improve this answer




















    • 1





      Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

      – christo183
      Apr 17 at 6:52






    • 1





      @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

      – Opifex
      Apr 17 at 6:56







    • 1





      No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

      – christo183
      Apr 17 at 8:46














    4














    4










    4










    Some newspaper readers are criminal




    This means that at least one newspaper reader is a criminal. It can be more, it can even be all of them. We do not know. But at least one is.




    All newspaper readers are reasonable people




    All of the newspaper readers are reasonable people. Because at least one of the readers was a criminal, we must have one reasonable criminal.




    Not all reasonable people are criminal




    This is something we can't tell.



    1. We do not know how many of the reasonable readers are criminals. It could be all of them, or it could be just one.

    2. We only know that all newspaper readers are reasonable. But... there might also be other reasonable people who do not read newspapers. We do not have information about this.

    So no, we can't tell if all reasonable people are criminals by this logic.






    share|improve this answer














    Some newspaper readers are criminal




    This means that at least one newspaper reader is a criminal. It can be more, it can even be all of them. We do not know. But at least one is.




    All newspaper readers are reasonable people




    All of the newspaper readers are reasonable people. Because at least one of the readers was a criminal, we must have one reasonable criminal.




    Not all reasonable people are criminal




    This is something we can't tell.



    1. We do not know how many of the reasonable readers are criminals. It could be all of them, or it could be just one.

    2. We only know that all newspaper readers are reasonable. But... there might also be other reasonable people who do not read newspapers. We do not have information about this.

    So no, we can't tell if all reasonable people are criminals by this logic.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Apr 17 at 6:43









    OpifexOpifex

    1411 bronze badge




    1411 bronze badge










    • 1





      Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

      – christo183
      Apr 17 at 6:52






    • 1





      @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

      – Opifex
      Apr 17 at 6:56







    • 1





      No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

      – christo183
      Apr 17 at 8:46













    • 1





      Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

      – christo183
      Apr 17 at 6:52






    • 1





      @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

      – Opifex
      Apr 17 at 6:56







    • 1





      No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

      – christo183
      Apr 17 at 8:46








    1




    1





    Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

    – christo183
    Apr 17 at 6:52





    Welcome to Philosophy SE! We usually like to see references, for a variety of reasons, but a well formed argument, like this one, makes everybody happy.

    – christo183
    Apr 17 at 6:52




    1




    1





    @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

    – Opifex
    Apr 17 at 6:56






    @christo183: Sorry, I'm new to SE in general. I also don't have any references. I had a course a few years ago which used proposition and predicate logic, so I wrote my answer purely based on what I remembered. (I also checked the other answers, which didn't actually include any references). Sorry if my answer was undesirable.

    – Opifex
    Apr 17 at 6:56





    1




    1





    No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

    – christo183
    Apr 17 at 8:46






    No problem, as long as your argument/answer is framed (as yours were) with obvious statements. For opinion and contentious facts we would require references. But in general references are nice for "further reading" purposes. Bottom line: your answer was quite good, a fact reflected by the relatively high number of upvotes... ;)

    – christo183
    Apr 17 at 8:46












    3
















    Rewrite the phrases in a more formal-like manner as



    1. For all x, N(x) implies R(x)



    2. There exists x, N(x) and C(x)



    And notice these do imply there are reasonable criminals, ie,



    There exists x, R(x) and C(x)



    Now, "Not all reasonable people are criminal" would be



    Not for all x, R(x) implies C(x)



    which is (classically) equivalent to



    There exists x, R(x) and not C(x)



    But it's easy to see one can construct a model with a single individual possessing the three predicates N, R and C, which satisfies the first three phrases, but not the last two






    share|improve this answer




















    • 1





      If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

      – Federico Poloni
      Apr 17 at 6:31
















    3
















    Rewrite the phrases in a more formal-like manner as



    1. For all x, N(x) implies R(x)



    2. There exists x, N(x) and C(x)



    And notice these do imply there are reasonable criminals, ie,



    There exists x, R(x) and C(x)



    Now, "Not all reasonable people are criminal" would be



    Not for all x, R(x) implies C(x)



    which is (classically) equivalent to



    There exists x, R(x) and not C(x)



    But it's easy to see one can construct a model with a single individual possessing the three predicates N, R and C, which satisfies the first three phrases, but not the last two






    share|improve this answer




















    • 1





      If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

      – Federico Poloni
      Apr 17 at 6:31














    3














    3










    3









    Rewrite the phrases in a more formal-like manner as



    1. For all x, N(x) implies R(x)



    2. There exists x, N(x) and C(x)



    And notice these do imply there are reasonable criminals, ie,



    There exists x, R(x) and C(x)



    Now, "Not all reasonable people are criminal" would be



    Not for all x, R(x) implies C(x)



    which is (classically) equivalent to



    There exists x, R(x) and not C(x)



    But it's easy to see one can construct a model with a single individual possessing the three predicates N, R and C, which satisfies the first three phrases, but not the last two






    share|improve this answer













    Rewrite the phrases in a more formal-like manner as



    1. For all x, N(x) implies R(x)



    2. There exists x, N(x) and C(x)



    And notice these do imply there are reasonable criminals, ie,



    There exists x, R(x) and C(x)



    Now, "Not all reasonable people are criminal" would be



    Not for all x, R(x) implies C(x)



    which is (classically) equivalent to



    There exists x, R(x) and not C(x)



    But it's easy to see one can construct a model with a single individual possessing the three predicates N, R and C, which satisfies the first three phrases, but not the last two







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Apr 16 at 19:10







    user35066

















    • 1





      If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

      – Federico Poloni
      Apr 17 at 6:31













    • 1





      If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

      – Federico Poloni
      Apr 17 at 6:31








    1




    1





    If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

    – Federico Poloni
    Apr 17 at 6:31






    If I understand correctly from OP's question, their doubts are in translating (2) into quantifiers. They have the doubt that (2), as is written, may mean "A proper subset/subclass of N(x) is R(x)", that is, there exists x, N(x) and C(x), and there exists x, N(x) and not C(x). That is the reason behind that 'some vs all' premise, and I think your answer (which is otherwise correct) should address that.

    – Federico Poloni
    Apr 17 at 6:31












    1

















    1. All newspaper readers are reasonable people.


    2. Some newspaper readers are criminal.


    ... [Thus] Not all reasonable people are criminal




    This syllogism is AIO in the third figure:



    1. All N are R.


    2. Some N are C.


    Thus: Some R are not C.



    The syllogism AIO-3 is invalid for two reasons. (1) A term (C) which is distributed in the conclusion is not distributed in the premise. (2) When the conclusion is negative, there must be exactly one negative premise. Here, both premises are positive.






    share|improve this answer





























      1

















      1. All newspaper readers are reasonable people.


      2. Some newspaper readers are criminal.


      ... [Thus] Not all reasonable people are criminal




      This syllogism is AIO in the third figure:



      1. All N are R.


      2. Some N are C.


      Thus: Some R are not C.



      The syllogism AIO-3 is invalid for two reasons. (1) A term (C) which is distributed in the conclusion is not distributed in the premise. (2) When the conclusion is negative, there must be exactly one negative premise. Here, both premises are positive.






      share|improve this answer



























        1














        1










        1










        1. All newspaper readers are reasonable people.


        2. Some newspaper readers are criminal.


        ... [Thus] Not all reasonable people are criminal




        This syllogism is AIO in the third figure:



        1. All N are R.


        2. Some N are C.


        Thus: Some R are not C.



        The syllogism AIO-3 is invalid for two reasons. (1) A term (C) which is distributed in the conclusion is not distributed in the premise. (2) When the conclusion is negative, there must be exactly one negative premise. Here, both premises are positive.






        share|improve this answer














        1. All newspaper readers are reasonable people.


        2. Some newspaper readers are criminal.


        ... [Thus] Not all reasonable people are criminal




        This syllogism is AIO in the third figure:



        1. All N are R.


        2. Some N are C.


        Thus: Some R are not C.



        The syllogism AIO-3 is invalid for two reasons. (1) A term (C) which is distributed in the conclusion is not distributed in the premise. (2) When the conclusion is negative, there must be exactly one negative premise. Here, both premises are positive.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Apr 18 at 0:44









        Mark AndrewsMark Andrews

        3,3372 gold badges10 silver badges29 bronze badges




        3,3372 gold badges10 silver badges29 bronze badges































            draft saved

            draft discarded















































            Thanks for contributing an answer to Philosophy Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61879%2fin-predicate-logic-does-existential-quantification-%25e2%2588%2583-include-universal-quanti%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Tamil (spriik) Luke uk diar | Nawigatjuun

            Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

            Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?