What is the value of $frac11+frac13-frac15-frac17+frac19+frac111-dots$?Find the sum of $sum 1/(k^2 - a^2)$ when $0<a<1$What is the value of $sum_n=1^infty frac1n^1+varepsilon$?Calculating the infinite series $1-frac13+frac15-frac17+frac19-frac111cdots$Another SummationInfinite summation convergenceElementary way to calculate the series $sumlimits_n=1^inftyfracH_nn2^n$Convergence of $1+frac13-frac12+frac15+frac17-frac14+frac19+frac111-frac16+ldots$What is the exact value of $sumlimits_x=1^∞frac1x^x$?
Scalar `new T` vs array `new T[1]`
How stable are PID loops really?
How to read a file line by line in Julia?
This fell out of my toilet when I unscrewed the supply line. What is it?
What does a "le" mean between subject and verb?
Solving the recurrence relation T(n) = 2T(n/2) + nlog n via summation
What is the next number in the series: 21, 21, 23, 20, 5, 25, 31, 24,?
Why does allocating a single 2D array take longer than a loop allocating multiple 1D arrays of the same total size and shape?
Meaning/translation of title "The Light Fantastic" By Terry Pratchett
"Es gefällt ihm." How to identify similar exceptions?
Iron-age tools, is there a way to extract heavy metals out of a creature?
universal string conversion
Find the percentage
What if you can't publish in very high impact journal or top conference during your PhD?
Are Ground Crew Airline or Airport Personnel?
Is having your hand in your pocket during a presentation bad?
I am measuring a 9W LED with a clamp on ammeter. Why does it only draw 7.62W?
Self-learning Calculus. Where does Lang's First Course in Calculus stay when compared to Apostol/Spivak/Courant
A goat is tied to the corner of a shed
What is the fastest way to move in Borderlands 3?
How are steel imports supposed to threaten US national security?
What do you call the fallacy of thinking that some action A will guarantee some outcome B, when in reality B depends on multiple other conditions?
Can a Dragon enter the feywild at will?
Injection from two strings to one string
What is the value of $frac11+frac13-frac15-frac17+frac19+frac111-dots$?
Find the sum of $sum 1/(k^2 - a^2)$ when $0<a<1$What is the value of $sum_n=1^infty frac1n^1+varepsilon$?Calculating the infinite series $1-frac13+frac15-frac17+frac19-frac111cdots$Another SummationInfinite summation convergenceElementary way to calculate the series $sumlimits_n=1^inftyfracH_nn2^n$Convergence of $1+frac13-frac12+frac15+frac17-frac14+frac19+frac111-frac16+ldots$What is the exact value of $sumlimits_x=1^∞frac1x^x$?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;
.everyonelovesstackoverflowposition:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;
$begingroup$
The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.
The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.
What is the convergence value, explicitly, of the second series?
The first summation is noted above, because it might be a useful information to evaluate the second summation.
sequences-and-series summation integers pi
$endgroup$
add a comment
|
$begingroup$
The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.
The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.
What is the convergence value, explicitly, of the second series?
The first summation is noted above, because it might be a useful information to evaluate the second summation.
sequences-and-series summation integers pi
$endgroup$
1
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40
add a comment
|
$begingroup$
The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.
The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.
What is the convergence value, explicitly, of the second series?
The first summation is noted above, because it might be a useful information to evaluate the second summation.
sequences-and-series summation integers pi
$endgroup$
The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.
The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.
What is the convergence value, explicitly, of the second series?
The first summation is noted above, because it might be a useful information to evaluate the second summation.
sequences-and-series summation integers pi
sequences-and-series summation integers pi
edited Apr 26 at 6:11
Felix Marin
71.2k8 gold badges116 silver badges155 bronze badges
71.2k8 gold badges116 silver badges155 bronze badges
asked Apr 17 at 10:08
Hussain-AlqatariHussain-Alqatari
1,2411 silver badge14 bronze badges
1,2411 silver badge14 bronze badges
1
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40
add a comment
|
1
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40
1
1
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40
add a comment
|
4 Answers
4
active
oldest
votes
$begingroup$
Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$ so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$
The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.
$endgroup$
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
add a comment
|
$begingroup$
Hint:
$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$
$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$
$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$
$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$
then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$
$endgroup$
add a comment
|
$begingroup$
$$
beginalign
&sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
&=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
&=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
&=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
&=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
&=fracpisqrt24tag5
endalign
$$
Explanation:
$(1)$: separate two absolutely convergent series
$(2)$: each series can be written as a sum over $mathbbZ$
$(3)$: factor $frac18$ out of each series
$(4)$: apply $(7)$ from this answer
$(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$
$endgroup$
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
add a comment
|
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
sum_n = 0^inftypars-1^n
sum_k = 2n + 1^2n + 21 over 2k - 1
\[5mm] = &
sum_n = 0^inftypars-1^n
sum_k = 0^11 over 2k + 4n + 1 =
sum_k = 0^1sum_n = 0^infty
pars-1^n over 4n + 2k + 1
\[5mm] = &
sum_k = 0^1sum_n = 0^inftypars-1^n
int_0^1t^4n + 2k,dd t =
sum_k = 0^1int_0^1t^2k
sum_n = 0^inftypars-t^4^n,dd t
\[5mm] = &
sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
sum_k = 0^1int_0^1t^2k - t^2k + 4 over
1 - t^8,dd t
\[5mm] = &
1 over 8sum_k = 0^1int_0^1
t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
\[5mm] = &
1 over 8sum_k = 0^1bracks%
Psiparsk over 4 + 5 over 8 -
Psiparsk over 4 + 1 over 8
endalign
where $dsPsi$ is the Digamma Function.
Then,
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots
\[5mm] = &
bracksPsipars5/8 - Psipars1/8 +
bracksPsipars7/8 - Psipars3/8 over 8
\[5mm] = &
bracksPsipars5/8 - Psipars3/8 +
bracksPsipars7/8 - Psipars1/8 over 8
endalign
With
Euler Reflection Formula:
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots =
picotpars3pi/8 + picotparspi/8 over 8
\[5mm] = &
pi,tanparspi/8 + cotparspi/8 over 8 =
pi over 8sinparspi/8cosparspi/8 =
pi over 4sinparspi/4
\[5mm] = &
pi over 4parsroot2/2 =
bbxroot2 over 4,pi approx 1.1107
endalign
$endgroup$
add a comment
|
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190908%2fwhat-is-the-value-of-frac11-frac13-frac15-frac17-frac19-frac111-dots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$ so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$
The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.
$endgroup$
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
add a comment
|
$begingroup$
Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$ so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$
The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.
$endgroup$
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
add a comment
|
$begingroup$
Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$ so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$
The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.
$endgroup$
Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$ so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$
The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.
answered Apr 17 at 11:03
saulspatzsaulspatz
24.6k4 gold badges16 silver badges41 bronze badges
24.6k4 gold badges16 silver badges41 bronze badges
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
add a comment
|
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
4
4
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
$endgroup$
– Hussain-Alqatari
Apr 17 at 12:56
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
$begingroup$
Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
$endgroup$
– Michael Seifert
Apr 17 at 14:11
add a comment
|
$begingroup$
Hint:
$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$
$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$
$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$
$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$
then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$
$endgroup$
add a comment
|
$begingroup$
Hint:
$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$
$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$
$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$
$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$
then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$
$endgroup$
add a comment
|
$begingroup$
Hint:
$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$
$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$
$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$
$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$
then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$
$endgroup$
Hint:
$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$
$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$
$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$
$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$
then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$
edited Apr 17 at 14:52
answered Apr 17 at 12:30
E.H.EE.H.E
18.6k1 gold badge20 silver badges70 bronze badges
18.6k1 gold badge20 silver badges70 bronze badges
add a comment
|
add a comment
|
$begingroup$
$$
beginalign
&sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
&=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
&=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
&=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
&=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
&=fracpisqrt24tag5
endalign
$$
Explanation:
$(1)$: separate two absolutely convergent series
$(2)$: each series can be written as a sum over $mathbbZ$
$(3)$: factor $frac18$ out of each series
$(4)$: apply $(7)$ from this answer
$(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$
$endgroup$
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
add a comment
|
$begingroup$
$$
beginalign
&sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
&=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
&=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
&=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
&=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
&=fracpisqrt24tag5
endalign
$$
Explanation:
$(1)$: separate two absolutely convergent series
$(2)$: each series can be written as a sum over $mathbbZ$
$(3)$: factor $frac18$ out of each series
$(4)$: apply $(7)$ from this answer
$(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$
$endgroup$
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
add a comment
|
$begingroup$
$$
beginalign
&sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
&=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
&=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
&=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
&=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
&=fracpisqrt24tag5
endalign
$$
Explanation:
$(1)$: separate two absolutely convergent series
$(2)$: each series can be written as a sum over $mathbbZ$
$(3)$: factor $frac18$ out of each series
$(4)$: apply $(7)$ from this answer
$(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$
$endgroup$
$$
beginalign
&sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
&=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
&=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
&=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
&=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
&=fracpisqrt24tag5
endalign
$$
Explanation:
$(1)$: separate two absolutely convergent series
$(2)$: each series can be written as a sum over $mathbbZ$
$(3)$: factor $frac18$ out of each series
$(4)$: apply $(7)$ from this answer
$(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$
edited Apr 17 at 17:49
answered Apr 17 at 17:33
robjohn♦robjohn
280k29 gold badges331 silver badges661 bronze badges
280k29 gold badges331 silver badges661 bronze badges
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
add a comment
|
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
$begingroup$
For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
$endgroup$
– robjohn♦
Apr 18 at 12:05
add a comment
|
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
sum_n = 0^inftypars-1^n
sum_k = 2n + 1^2n + 21 over 2k - 1
\[5mm] = &
sum_n = 0^inftypars-1^n
sum_k = 0^11 over 2k + 4n + 1 =
sum_k = 0^1sum_n = 0^infty
pars-1^n over 4n + 2k + 1
\[5mm] = &
sum_k = 0^1sum_n = 0^inftypars-1^n
int_0^1t^4n + 2k,dd t =
sum_k = 0^1int_0^1t^2k
sum_n = 0^inftypars-t^4^n,dd t
\[5mm] = &
sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
sum_k = 0^1int_0^1t^2k - t^2k + 4 over
1 - t^8,dd t
\[5mm] = &
1 over 8sum_k = 0^1int_0^1
t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
\[5mm] = &
1 over 8sum_k = 0^1bracks%
Psiparsk over 4 + 5 over 8 -
Psiparsk over 4 + 1 over 8
endalign
where $dsPsi$ is the Digamma Function.
Then,
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots
\[5mm] = &
bracksPsipars5/8 - Psipars1/8 +
bracksPsipars7/8 - Psipars3/8 over 8
\[5mm] = &
bracksPsipars5/8 - Psipars3/8 +
bracksPsipars7/8 - Psipars1/8 over 8
endalign
With
Euler Reflection Formula:
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots =
picotpars3pi/8 + picotparspi/8 over 8
\[5mm] = &
pi,tanparspi/8 + cotparspi/8 over 8 =
pi over 8sinparspi/8cosparspi/8 =
pi over 4sinparspi/4
\[5mm] = &
pi over 4parsroot2/2 =
bbxroot2 over 4,pi approx 1.1107
endalign
$endgroup$
add a comment
|
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
sum_n = 0^inftypars-1^n
sum_k = 2n + 1^2n + 21 over 2k - 1
\[5mm] = &
sum_n = 0^inftypars-1^n
sum_k = 0^11 over 2k + 4n + 1 =
sum_k = 0^1sum_n = 0^infty
pars-1^n over 4n + 2k + 1
\[5mm] = &
sum_k = 0^1sum_n = 0^inftypars-1^n
int_0^1t^4n + 2k,dd t =
sum_k = 0^1int_0^1t^2k
sum_n = 0^inftypars-t^4^n,dd t
\[5mm] = &
sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
sum_k = 0^1int_0^1t^2k - t^2k + 4 over
1 - t^8,dd t
\[5mm] = &
1 over 8sum_k = 0^1int_0^1
t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
\[5mm] = &
1 over 8sum_k = 0^1bracks%
Psiparsk over 4 + 5 over 8 -
Psiparsk over 4 + 1 over 8
endalign
where $dsPsi$ is the Digamma Function.
Then,
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots
\[5mm] = &
bracksPsipars5/8 - Psipars1/8 +
bracksPsipars7/8 - Psipars3/8 over 8
\[5mm] = &
bracksPsipars5/8 - Psipars3/8 +
bracksPsipars7/8 - Psipars1/8 over 8
endalign
With
Euler Reflection Formula:
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots =
picotpars3pi/8 + picotparspi/8 over 8
\[5mm] = &
pi,tanparspi/8 + cotparspi/8 over 8 =
pi over 8sinparspi/8cosparspi/8 =
pi over 4sinparspi/4
\[5mm] = &
pi over 4parsroot2/2 =
bbxroot2 over 4,pi approx 1.1107
endalign
$endgroup$
add a comment
|
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
sum_n = 0^inftypars-1^n
sum_k = 2n + 1^2n + 21 over 2k - 1
\[5mm] = &
sum_n = 0^inftypars-1^n
sum_k = 0^11 over 2k + 4n + 1 =
sum_k = 0^1sum_n = 0^infty
pars-1^n over 4n + 2k + 1
\[5mm] = &
sum_k = 0^1sum_n = 0^inftypars-1^n
int_0^1t^4n + 2k,dd t =
sum_k = 0^1int_0^1t^2k
sum_n = 0^inftypars-t^4^n,dd t
\[5mm] = &
sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
sum_k = 0^1int_0^1t^2k - t^2k + 4 over
1 - t^8,dd t
\[5mm] = &
1 over 8sum_k = 0^1int_0^1
t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
\[5mm] = &
1 over 8sum_k = 0^1bracks%
Psiparsk over 4 + 5 over 8 -
Psiparsk over 4 + 1 over 8
endalign
where $dsPsi$ is the Digamma Function.
Then,
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots
\[5mm] = &
bracksPsipars5/8 - Psipars1/8 +
bracksPsipars7/8 - Psipars3/8 over 8
\[5mm] = &
bracksPsipars5/8 - Psipars3/8 +
bracksPsipars7/8 - Psipars1/8 over 8
endalign
With
Euler Reflection Formula:
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots =
picotpars3pi/8 + picotparspi/8 over 8
\[5mm] = &
pi,tanparspi/8 + cotparspi/8 over 8 =
pi over 8sinparspi/8cosparspi/8 =
pi over 4sinparspi/4
\[5mm] = &
pi over 4parsroot2/2 =
bbxroot2 over 4,pi approx 1.1107
endalign
$endgroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
sum_n = 0^inftypars-1^n
sum_k = 2n + 1^2n + 21 over 2k - 1
\[5mm] = &
sum_n = 0^inftypars-1^n
sum_k = 0^11 over 2k + 4n + 1 =
sum_k = 0^1sum_n = 0^infty
pars-1^n over 4n + 2k + 1
\[5mm] = &
sum_k = 0^1sum_n = 0^inftypars-1^n
int_0^1t^4n + 2k,dd t =
sum_k = 0^1int_0^1t^2k
sum_n = 0^inftypars-t^4^n,dd t
\[5mm] = &
sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
sum_k = 0^1int_0^1t^2k - t^2k + 4 over
1 - t^8,dd t
\[5mm] = &
1 over 8sum_k = 0^1int_0^1
t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
\[5mm] = &
1 over 8sum_k = 0^1bracks%
Psiparsk over 4 + 5 over 8 -
Psiparsk over 4 + 1 over 8
endalign
where $dsPsi$ is the Digamma Function.
Then,
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots
\[5mm] = &
bracksPsipars5/8 - Psipars1/8 +
bracksPsipars7/8 - Psipars3/8 over 8
\[5mm] = &
bracksPsipars5/8 - Psipars3/8 +
bracksPsipars7/8 - Psipars1/8 over 8
endalign
With
Euler Reflection Formula:
beginalign
&bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
- 1 over 7 + 1 over 9 + 1 over 11 - cdots =
picotpars3pi/8 + picotparspi/8 over 8
\[5mm] = &
pi,tanparspi/8 + cotparspi/8 over 8 =
pi over 8sinparspi/8cosparspi/8 =
pi over 4sinparspi/4
\[5mm] = &
pi over 4parsroot2/2 =
bbxroot2 over 4,pi approx 1.1107
endalign
edited Apr 26 at 7:41
answered Apr 26 at 7:01
Felix MarinFelix Marin
71.2k8 gold badges116 silver badges155 bronze badges
71.2k8 gold badges116 silver badges155 bronze badges
add a comment
|
add a comment
|
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190908%2fwhat-is-the-value-of-frac11-frac13-frac15-frac17-frac19-frac111-dots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28
$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40