Is every diagonalizable matrix is an exponentialSymmetric matrix is always diagonalizable?Is the following matrix diagonalizable?Showing that if $AB=BA$ then $A$ and $B$ are simultaneously diagonalizableTrue of False: If $A$ is an $ntimes n$ diagonalizable matrix, then $0$ can not be in eigenvalue of $A$.Diagonalizable Matrices and Triangular MatricesDetermine if a matrix is diagonalizableDoes every diagonalizable matrix have eigenvectors which form a basis?Matrix exponential of any matrixIs there a matrix $B$ such that $B^2=A$, with $A$ being diagonalizable?Let $A$ be a diagonalizable matrix, show that $A^-1 = A$

What is it called when one voice type sings a 'solo'?

Ideas for 3rd eye abilities

What do the Banks children have against barley water?

Is it wise to focus on putting odd beats on left when playing double bass drums?

Why is my log file so massive? 22gb. I am running log backups

Copycat chess is back

Does a dangling wire really electrocute me if I'm standing in water?

Could a US political party gain complete control over the government by removing checks & balances?

Add an angle to a sphere

"listening to me about as much as you're listening to this pole here"

"My colleague's body is amazing"

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

How to manage monthly salary

Why do we use polarized capacitors?

Can I find out the caloric content of bread by dehydrating it?

Finding files for which a command fails

Where to refill my bottle in India?

Crop image to path created in TikZ?

How to deal with fear of taking dependencies

What is the command to reset a PC without deleting any files

Shall I use personal or official e-mail account when registering to external websites for work purpose?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

How can I add custom success page

Are white and non-white police officers equally likely to kill black suspects?



Is every diagonalizable matrix is an exponential


Symmetric matrix is always diagonalizable?Is the following matrix diagonalizable?Showing that if $AB=BA$ then $A$ and $B$ are simultaneously diagonalizableTrue of False: If $A$ is an $ntimes n$ diagonalizable matrix, then $0$ can not be in eigenvalue of $A$.Diagonalizable Matrices and Triangular MatricesDetermine if a matrix is diagonalizableDoes every diagonalizable matrix have eigenvectors which form a basis?Matrix exponential of any matrixIs there a matrix $B$ such that $B^2=A$, with $A$ being diagonalizable?Let $A$ be a diagonalizable matrix, show that $A^-1 = A$













1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^-1$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    2 days ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    2 days ago
















1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^-1$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    2 days ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    2 days ago














1












1








1





$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^-1$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$




Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^-1$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.







linear-algebra lie-groups diagonalization matrix-exponential






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









José Carlos Santos

173k23133241




173k23133241










asked 2 days ago









PerelManPerelMan

732414




732414







  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    2 days ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    2 days ago













  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    2 days ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    2 days ago








2




2




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
2 days ago




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
2 days ago












$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
2 days ago





$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
2 days ago











1 Answer
1






active

oldest

votes


















4












$begingroup$

A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^operatornametrAneq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(beginbmatrixlambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nendbmatrixright)=beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$So, $A$ is exponential.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^operatornametrAneq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(beginbmatrixlambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nendbmatrixright)=beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$So, $A$ is exponential.






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^operatornametrAneq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(beginbmatrixlambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nendbmatrixright)=beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$So, $A$ is exponential.






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^operatornametrAneq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(beginbmatrixlambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nendbmatrixright)=beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$So, $A$ is exponential.






        share|cite|improve this answer











        $endgroup$



        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^operatornametrAneq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(beginbmatrixlambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nendbmatrixright)=beginbmatrixd_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nendbmatrix.$$So, $A$ is exponential.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered 2 days ago









        José Carlos SantosJosé Carlos Santos

        173k23133241




        173k23133241



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Tamil (spriik) Luke uk diar | Nawigatjuun

            Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

            Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?