Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?

Extremely casual way to make requests to very close friends

Why are Gatwick's runways too close together?

AsyncDictionary - Can you break thread safety?

Different inverter (logic gate) symbols

Y2K... in 2019?

Withdrew when Jimmy met up with Heath

Christian apologetics regarding the killing of innocent children during the Genesis flood

How does 'AND' distribute over 'OR' (Set Theory)?

Ex-contractor published company source code and secrets online

how to differentiate when a child lwc component is called twice in parent component?

Infeasibility in mathematical optimization models

How is this kind of structure made?

Plausibility of Ice Eaters in the Arctic

Tikzpicture - finish drawing a curved line for a cake slice

Why is transplanting a specific intact brain impossible if it is generally possible?

How to create all combinations from a nested list while preserving the structure using R?

What should I call bands of armed men in Medieval Times?

What happen to those who died but not from the snap?

During the Space Shuttle Columbia Disaster of 2003, Why Did The Flight Director Say, "Lock the doors."?

How can I solve for the intersection points of two ellipses?

Multirow in tabularx?

Can you castle with a "ghost" rook?

changing number of arguments to a function in secondary evaluation

Euler products in positive characteristic? [reference request]



Training a classifier when some of the features are unknown


Why does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


I am training a classifier in Matlab with a dataset that I created.
Unfortunately some of the features in the dataset were not recorded.



I currently have the unknown features set as -99999.



So, for example my dataset looks something like this:



class1: 10 1 12 -99999 6 8
class1: 11 2 13 7 6 10
...
class2: 5 -99999 4 3 2 -99999
class2: -99999 16 4 3 1 8
...
class3: 18 2 11 22 7 5
class3: 19 1 9 25 7 5
...


and so on, where the -99999 are the places where the features werent able to be measured. In this case, each class has 6 features.



I don't want to bias my classifier with the unknown features so I thought it would be a good idea to set the unknowns to -99999 so it would be way out of the range of normal features.



I tested the classifier with the -99999's and it was 78% accurate.
Then I changed the -99999 to 0's and tested the classifier again, this time it was 91% accurate.



So my question is, what is a general rule for training a classifier when some of the features were not recorded? Was I right to assume setting the unknowns to a very high negative value? But why was it more accurate when I set the unknowns to 0s?



Thanks for reading!










share|improve this question











$endgroup$




















    4












    $begingroup$


    I am training a classifier in Matlab with a dataset that I created.
    Unfortunately some of the features in the dataset were not recorded.



    I currently have the unknown features set as -99999.



    So, for example my dataset looks something like this:



    class1: 10 1 12 -99999 6 8
    class1: 11 2 13 7 6 10
    ...
    class2: 5 -99999 4 3 2 -99999
    class2: -99999 16 4 3 1 8
    ...
    class3: 18 2 11 22 7 5
    class3: 19 1 9 25 7 5
    ...


    and so on, where the -99999 are the places where the features werent able to be measured. In this case, each class has 6 features.



    I don't want to bias my classifier with the unknown features so I thought it would be a good idea to set the unknowns to -99999 so it would be way out of the range of normal features.



    I tested the classifier with the -99999's and it was 78% accurate.
    Then I changed the -99999 to 0's and tested the classifier again, this time it was 91% accurate.



    So my question is, what is a general rule for training a classifier when some of the features were not recorded? Was I right to assume setting the unknowns to a very high negative value? But why was it more accurate when I set the unknowns to 0s?



    Thanks for reading!










    share|improve this question











    $endgroup$
















      4












      4








      4





      $begingroup$


      I am training a classifier in Matlab with a dataset that I created.
      Unfortunately some of the features in the dataset were not recorded.



      I currently have the unknown features set as -99999.



      So, for example my dataset looks something like this:



      class1: 10 1 12 -99999 6 8
      class1: 11 2 13 7 6 10
      ...
      class2: 5 -99999 4 3 2 -99999
      class2: -99999 16 4 3 1 8
      ...
      class3: 18 2 11 22 7 5
      class3: 19 1 9 25 7 5
      ...


      and so on, where the -99999 are the places where the features werent able to be measured. In this case, each class has 6 features.



      I don't want to bias my classifier with the unknown features so I thought it would be a good idea to set the unknowns to -99999 so it would be way out of the range of normal features.



      I tested the classifier with the -99999's and it was 78% accurate.
      Then I changed the -99999 to 0's and tested the classifier again, this time it was 91% accurate.



      So my question is, what is a general rule for training a classifier when some of the features were not recorded? Was I right to assume setting the unknowns to a very high negative value? But why was it more accurate when I set the unknowns to 0s?



      Thanks for reading!










      share|improve this question











      $endgroup$




      I am training a classifier in Matlab with a dataset that I created.
      Unfortunately some of the features in the dataset were not recorded.



      I currently have the unknown features set as -99999.



      So, for example my dataset looks something like this:



      class1: 10 1 12 -99999 6 8
      class1: 11 2 13 7 6 10
      ...
      class2: 5 -99999 4 3 2 -99999
      class2: -99999 16 4 3 1 8
      ...
      class3: 18 2 11 22 7 5
      class3: 19 1 9 25 7 5
      ...


      and so on, where the -99999 are the places where the features werent able to be measured. In this case, each class has 6 features.



      I don't want to bias my classifier with the unknown features so I thought it would be a good idea to set the unknowns to -99999 so it would be way out of the range of normal features.



      I tested the classifier with the -99999's and it was 78% accurate.
      Then I changed the -99999 to 0's and tested the classifier again, this time it was 91% accurate.



      So my question is, what is a general rule for training a classifier when some of the features were not recorded? Was I right to assume setting the unknowns to a very high negative value? But why was it more accurate when I set the unknowns to 0s?



      Thanks for reading!







      machine-learning classification dataset matlab






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 15 at 2:46







      Darklink9110

















      asked Apr 15 at 2:40









      Darklink9110Darklink9110

      235 bronze badges




      235 bronze badges























          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          Welcome to Data Science SE!



          Well, we say that most of our jobs is to wrangle with data, and that is because data is usually trying to deceive us... jokes aside:



          You have a missing data problem



          that means your have to clean your data and fill those missing values. To perform this cleaning process your must take the most classic statistician inside of you and ask:



          • Why is this data missing?

          • How much data is missing?

          There are many reasons for a specific information to be unavailable. This will demand you to make assumptions and decide how to deal with this.



          Jeff Sauro posted at MeasuringU: 7 Ways to Handle Missing Data, some which I list here:



          • Delete corrupted samples:

          If you have a large dataset and there is not much data missing, you can simply remove those corrupted data points and go on with life



          • Recover the values:

          Some problems will allow you to go back and get missing information.



          We usually ain't that lucky, then you can



          • Educated Guessing:

          Sometimes, you can infer what would be the feature value by simply looking their pears. That is a bit arbitrary but it might work.



          • Average:

          This is the most common approach, simply use the average of that value whenever it is missing. This might artificially reduce your variance but so does using 0 or -9999... for every missing value.



          • Regression Substitution:

          You can use a multiple regression to infer the missing value from the available values for each candidate.



          Some references on missing data are:



          • Allison, Paul D. 2001. Missing Data. Sage University Papers
            Series on Quantitative Applications in the Social Sciences.
            Thousand Oaks: Sage.

          • Enders, Craig. 2010. Applied Missing Data Analysis.
            Guilford Press: New York.

          • Little, Roderick J., Donald Rubin. 2002. Statistical Analysis
            with Missing Data. John Wiley & Sons, Inc: Hoboken.

          • Schafer, Joseph L., John W. Graham. 2002. “Missing Data:
            Our View of the State of the Art.” Psychological Methods.


          About your experiment:



          Adding -99... is creating outliers and that bit of information is heavy (numerically speaking, it is huge) and will affect parameter tuning. For example, suppose you have this data:



          | Feature1 | Feature2 | 
          |----------|----------|
          | 0 | 8 |
          | -1 | 7 |
          | 1 | - |
          | - | 8 |


          And you try filling the missing values with -99, now try to fit a linear regression trough the data. Can you see that you don't be able to fit it properly?



          The brown line



          The line won't fit, and this will yield bad performance.



          Adding 0 values on the other hand will give a slightly better line:



          The yellow line



          It is still not good, but slightly better since the scale of the parameters will be more realistic.



          Now, using average, is this case will give you even better curve, but using regression will give you a perfect fitting line:



          The perfect line



          Note: I need to remake those images, but these should do until I have the time for it.






          share|improve this answer











          $endgroup$










          • 2




            $begingroup$
            Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
            $endgroup$
            – jeff
            Apr 15 at 7:20














          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49298%2ftraining-a-classifier-when-some-of-the-features-are-unknown%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          Welcome to Data Science SE!



          Well, we say that most of our jobs is to wrangle with data, and that is because data is usually trying to deceive us... jokes aside:



          You have a missing data problem



          that means your have to clean your data and fill those missing values. To perform this cleaning process your must take the most classic statistician inside of you and ask:



          • Why is this data missing?

          • How much data is missing?

          There are many reasons for a specific information to be unavailable. This will demand you to make assumptions and decide how to deal with this.



          Jeff Sauro posted at MeasuringU: 7 Ways to Handle Missing Data, some which I list here:



          • Delete corrupted samples:

          If you have a large dataset and there is not much data missing, you can simply remove those corrupted data points and go on with life



          • Recover the values:

          Some problems will allow you to go back and get missing information.



          We usually ain't that lucky, then you can



          • Educated Guessing:

          Sometimes, you can infer what would be the feature value by simply looking their pears. That is a bit arbitrary but it might work.



          • Average:

          This is the most common approach, simply use the average of that value whenever it is missing. This might artificially reduce your variance but so does using 0 or -9999... for every missing value.



          • Regression Substitution:

          You can use a multiple regression to infer the missing value from the available values for each candidate.



          Some references on missing data are:



          • Allison, Paul D. 2001. Missing Data. Sage University Papers
            Series on Quantitative Applications in the Social Sciences.
            Thousand Oaks: Sage.

          • Enders, Craig. 2010. Applied Missing Data Analysis.
            Guilford Press: New York.

          • Little, Roderick J., Donald Rubin. 2002. Statistical Analysis
            with Missing Data. John Wiley & Sons, Inc: Hoboken.

          • Schafer, Joseph L., John W. Graham. 2002. “Missing Data:
            Our View of the State of the Art.” Psychological Methods.


          About your experiment:



          Adding -99... is creating outliers and that bit of information is heavy (numerically speaking, it is huge) and will affect parameter tuning. For example, suppose you have this data:



          | Feature1 | Feature2 | 
          |----------|----------|
          | 0 | 8 |
          | -1 | 7 |
          | 1 | - |
          | - | 8 |


          And you try filling the missing values with -99, now try to fit a linear regression trough the data. Can you see that you don't be able to fit it properly?



          The brown line



          The line won't fit, and this will yield bad performance.



          Adding 0 values on the other hand will give a slightly better line:



          The yellow line



          It is still not good, but slightly better since the scale of the parameters will be more realistic.



          Now, using average, is this case will give you even better curve, but using regression will give you a perfect fitting line:



          The perfect line



          Note: I need to remake those images, but these should do until I have the time for it.






          share|improve this answer











          $endgroup$










          • 2




            $begingroup$
            Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
            $endgroup$
            – jeff
            Apr 15 at 7:20
















          6












          $begingroup$

          Welcome to Data Science SE!



          Well, we say that most of our jobs is to wrangle with data, and that is because data is usually trying to deceive us... jokes aside:



          You have a missing data problem



          that means your have to clean your data and fill those missing values. To perform this cleaning process your must take the most classic statistician inside of you and ask:



          • Why is this data missing?

          • How much data is missing?

          There are many reasons for a specific information to be unavailable. This will demand you to make assumptions and decide how to deal with this.



          Jeff Sauro posted at MeasuringU: 7 Ways to Handle Missing Data, some which I list here:



          • Delete corrupted samples:

          If you have a large dataset and there is not much data missing, you can simply remove those corrupted data points and go on with life



          • Recover the values:

          Some problems will allow you to go back and get missing information.



          We usually ain't that lucky, then you can



          • Educated Guessing:

          Sometimes, you can infer what would be the feature value by simply looking their pears. That is a bit arbitrary but it might work.



          • Average:

          This is the most common approach, simply use the average of that value whenever it is missing. This might artificially reduce your variance but so does using 0 or -9999... for every missing value.



          • Regression Substitution:

          You can use a multiple regression to infer the missing value from the available values for each candidate.



          Some references on missing data are:



          • Allison, Paul D. 2001. Missing Data. Sage University Papers
            Series on Quantitative Applications in the Social Sciences.
            Thousand Oaks: Sage.

          • Enders, Craig. 2010. Applied Missing Data Analysis.
            Guilford Press: New York.

          • Little, Roderick J., Donald Rubin. 2002. Statistical Analysis
            with Missing Data. John Wiley & Sons, Inc: Hoboken.

          • Schafer, Joseph L., John W. Graham. 2002. “Missing Data:
            Our View of the State of the Art.” Psychological Methods.


          About your experiment:



          Adding -99... is creating outliers and that bit of information is heavy (numerically speaking, it is huge) and will affect parameter tuning. For example, suppose you have this data:



          | Feature1 | Feature2 | 
          |----------|----------|
          | 0 | 8 |
          | -1 | 7 |
          | 1 | - |
          | - | 8 |


          And you try filling the missing values with -99, now try to fit a linear regression trough the data. Can you see that you don't be able to fit it properly?



          The brown line



          The line won't fit, and this will yield bad performance.



          Adding 0 values on the other hand will give a slightly better line:



          The yellow line



          It is still not good, but slightly better since the scale of the parameters will be more realistic.



          Now, using average, is this case will give you even better curve, but using regression will give you a perfect fitting line:



          The perfect line



          Note: I need to remake those images, but these should do until I have the time for it.






          share|improve this answer











          $endgroup$










          • 2




            $begingroup$
            Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
            $endgroup$
            – jeff
            Apr 15 at 7:20














          6












          6








          6





          $begingroup$

          Welcome to Data Science SE!



          Well, we say that most of our jobs is to wrangle with data, and that is because data is usually trying to deceive us... jokes aside:



          You have a missing data problem



          that means your have to clean your data and fill those missing values. To perform this cleaning process your must take the most classic statistician inside of you and ask:



          • Why is this data missing?

          • How much data is missing?

          There are many reasons for a specific information to be unavailable. This will demand you to make assumptions and decide how to deal with this.



          Jeff Sauro posted at MeasuringU: 7 Ways to Handle Missing Data, some which I list here:



          • Delete corrupted samples:

          If you have a large dataset and there is not much data missing, you can simply remove those corrupted data points and go on with life



          • Recover the values:

          Some problems will allow you to go back and get missing information.



          We usually ain't that lucky, then you can



          • Educated Guessing:

          Sometimes, you can infer what would be the feature value by simply looking their pears. That is a bit arbitrary but it might work.



          • Average:

          This is the most common approach, simply use the average of that value whenever it is missing. This might artificially reduce your variance but so does using 0 or -9999... for every missing value.



          • Regression Substitution:

          You can use a multiple regression to infer the missing value from the available values for each candidate.



          Some references on missing data are:



          • Allison, Paul D. 2001. Missing Data. Sage University Papers
            Series on Quantitative Applications in the Social Sciences.
            Thousand Oaks: Sage.

          • Enders, Craig. 2010. Applied Missing Data Analysis.
            Guilford Press: New York.

          • Little, Roderick J., Donald Rubin. 2002. Statistical Analysis
            with Missing Data. John Wiley & Sons, Inc: Hoboken.

          • Schafer, Joseph L., John W. Graham. 2002. “Missing Data:
            Our View of the State of the Art.” Psychological Methods.


          About your experiment:



          Adding -99... is creating outliers and that bit of information is heavy (numerically speaking, it is huge) and will affect parameter tuning. For example, suppose you have this data:



          | Feature1 | Feature2 | 
          |----------|----------|
          | 0 | 8 |
          | -1 | 7 |
          | 1 | - |
          | - | 8 |


          And you try filling the missing values with -99, now try to fit a linear regression trough the data. Can you see that you don't be able to fit it properly?



          The brown line



          The line won't fit, and this will yield bad performance.



          Adding 0 values on the other hand will give a slightly better line:



          The yellow line



          It is still not good, but slightly better since the scale of the parameters will be more realistic.



          Now, using average, is this case will give you even better curve, but using regression will give you a perfect fitting line:



          The perfect line



          Note: I need to remake those images, but these should do until I have the time for it.






          share|improve this answer











          $endgroup$



          Welcome to Data Science SE!



          Well, we say that most of our jobs is to wrangle with data, and that is because data is usually trying to deceive us... jokes aside:



          You have a missing data problem



          that means your have to clean your data and fill those missing values. To perform this cleaning process your must take the most classic statistician inside of you and ask:



          • Why is this data missing?

          • How much data is missing?

          There are many reasons for a specific information to be unavailable. This will demand you to make assumptions and decide how to deal with this.



          Jeff Sauro posted at MeasuringU: 7 Ways to Handle Missing Data, some which I list here:



          • Delete corrupted samples:

          If you have a large dataset and there is not much data missing, you can simply remove those corrupted data points and go on with life



          • Recover the values:

          Some problems will allow you to go back and get missing information.



          We usually ain't that lucky, then you can



          • Educated Guessing:

          Sometimes, you can infer what would be the feature value by simply looking their pears. That is a bit arbitrary but it might work.



          • Average:

          This is the most common approach, simply use the average of that value whenever it is missing. This might artificially reduce your variance but so does using 0 or -9999... for every missing value.



          • Regression Substitution:

          You can use a multiple regression to infer the missing value from the available values for each candidate.



          Some references on missing data are:



          • Allison, Paul D. 2001. Missing Data. Sage University Papers
            Series on Quantitative Applications in the Social Sciences.
            Thousand Oaks: Sage.

          • Enders, Craig. 2010. Applied Missing Data Analysis.
            Guilford Press: New York.

          • Little, Roderick J., Donald Rubin. 2002. Statistical Analysis
            with Missing Data. John Wiley & Sons, Inc: Hoboken.

          • Schafer, Joseph L., John W. Graham. 2002. “Missing Data:
            Our View of the State of the Art.” Psychological Methods.


          About your experiment:



          Adding -99... is creating outliers and that bit of information is heavy (numerically speaking, it is huge) and will affect parameter tuning. For example, suppose you have this data:



          | Feature1 | Feature2 | 
          |----------|----------|
          | 0 | 8 |
          | -1 | 7 |
          | 1 | - |
          | - | 8 |


          And you try filling the missing values with -99, now try to fit a linear regression trough the data. Can you see that you don't be able to fit it properly?



          The brown line



          The line won't fit, and this will yield bad performance.



          Adding 0 values on the other hand will give a slightly better line:



          The yellow line



          It is still not good, but slightly better since the scale of the parameters will be more realistic.



          Now, using average, is this case will give you even better curve, but using regression will give you a perfect fitting line:



          The perfect line



          Note: I need to remake those images, but these should do until I have the time for it.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Apr 15 at 3:56

























          answered Apr 15 at 3:30









          Pedro Henrique MonfortePedro Henrique Monforte

          6892 silver badges19 bronze badges




          6892 silver badges19 bronze badges










          • 2




            $begingroup$
            Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
            $endgroup$
            – jeff
            Apr 15 at 7:20













          • 2




            $begingroup$
            Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
            $endgroup$
            – jeff
            Apr 15 at 7:20








          2




          2




          $begingroup$
          Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
          $endgroup$
          – jeff
          Apr 15 at 7:20





          $begingroup$
          Excellent explanation. Also, just adding to it, I think the best thing to do in data science is to play with missing data. You can (and should) check out Multiple Imputation, this is the state of the art process to deal with missing data.
          $endgroup$
          – jeff
          Apr 15 at 7:20


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49298%2ftraining-a-classifier-when-some-of-the-features-are-unknown%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Tamil (spriik) Luke uk diar | Nawigatjuun

          Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

          Where does the image of a data connector as a sharp metal spike originate from?Where does the concept of infected people turning into zombies only after death originate from?Where does the motif of a reanimated human head originate?Where did the notion that Dragons could speak originate?Where does the archetypal image of the 'Grey' alien come from?Where did the suffix '-Man' originate?Where does the notion of being injured or killed by an illusion originate?Where did the term “sophont” originate?Where does the trope of magic spells being driven by advanced technology originate from?Where did the term “the living impaired” originate?