Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersectInterpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups

Does bootstrapped regression allow for inference?

Denied boarding due to overcrowding, Sparpreis ticket. What are my rights?

How to deal with fear of taking dependencies

extract characters between two commas?

What do the Banks children have against barley water?

Why is my log file so massive? 22gb. I am running log backups

Are objects structures and/or vice versa?

Was there ever an axiom rendered a theorem?

I see my dog run

What is the command to reset a PC without deleting any files

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Are white and non-white police officers equally likely to kill black suspects?

Shall I use personal or official e-mail account when registering to external websites for work purpose?

How to move the player while also allowing forces to affect it

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Does it makes sense to buy a new cycle to learn riding?

What does it exactly mean if a random variable follows a distribution

Does a dangling wire really electrocute me if I'm standing in water?

Why is the design of haulage companies so “special”?

Where else does the Shulchan Aruch quote an authority by name?

What does 'script /dev/null' do?

Is Fable (1996) connected in any way to the Fable franchise from Lionhead Studios?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

Need help identifying/translating a plaque in Tangier, Morocco



Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect


Interpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    2 days ago











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    2 days ago

















1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    2 days ago











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    2 days ago













1












1








1


1



$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$




"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?







cox-model kaplan-meier proportional-hazards schoenfeld-residuals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago







Omar Rafique

















asked 2 days ago









Omar RafiqueOmar Rafique

486




486







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    2 days ago











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    2 days ago












  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    2 days ago











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    2 days ago







2




2




$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
2 days ago





$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
2 days ago













$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
2 days ago




$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
2 days ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



    In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "65"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



      You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



        You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






          share|cite|improve this answer









          $endgroup$



          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          EdMEdM

          22.2k23496




          22.2k23496























              3












              $begingroup$

              You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



              In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                  share|cite|improve this answer











                  $endgroup$



                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 2 days ago

























                  answered 2 days ago









                  igoR87igoR87

                  3079




                  3079



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Cross Validated!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Tamil (spriik) Luke uk diar | Nawigatjuun

                      Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

                      Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?