Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges.Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Decide whether the series $sum_n=1^infty frac1+5^n1+6^n$ converges or divergesDetermine whether the series converges or diverges.To test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$
On the Rømer experiments and the speed if light
I accidentally overwrote a Linux binary file
Should you play baroque pieces a semitone lower?
How does "Te vas a cansar" mean "You're going to get tired"?
How to take the beginning and end parts of a list with simpler syntax?
Does this Foo machine halt?
Can a fight scene, component-wise, be too complex and complicated?
How can I shift my job responsibilities back to programming?
As a 16 year old, how can I keep my money safe from my mother?
Was the 2019 Lion King film made through motion capture?
Is it legal for a company to enter an agreement not to hire employees from another company?
try/finally with bash shell
Different inverter (logic gate) symbols
Is there a way to unplug the Raspberry pi safely without shutting down
How to mark beverage cans in a cooler for a blind person?
What address do I use for Nexus application?
How can Radagast come across Gandalf and Thorin's company?
Is Texas Instrument wrong with their pin number on TO-92 package?
Write an interpreter for *
What is the length of pair of wires after twisting them around each other?
Te-form and かつ and も?
CTCI Chapter 1 : Palindrome Permutation
PhD advisor lost funding, need advice
ICO or PNG Format?
Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges.
Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Decide whether the series $sum_n=1^infty frac1+5^n1+6^n$ converges or divergesDetermine whether the series converges or diverges.To test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14
add a comment |
$begingroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$$sum_k=1^inftyleft(frac kk+1right)^k^2$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
sequences-and-series convergence
edited Apr 15 at 6:19
user21820
42k5 gold badges48 silver badges170 bronze badges
42k5 gold badges48 silver badges170 bronze badges
asked Apr 15 at 2:33
radiusradius
612 bronze badges
612 bronze badges
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14
add a comment |
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
1
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
1
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
add a comment |
$begingroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
$endgroup$
By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$
So your series converges!
edited Apr 15 at 2:53
answered Apr 15 at 2:46
Chinnapparaj RChinnapparaj R
8,7612 gold badges10 silver badges32 bronze badges
8,7612 gold badges10 silver badges32 bronze badges
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
add a comment |
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
$begingroup$
How did you know to take the supremum
$endgroup$
– radius
Apr 15 at 2:51
1
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
Apr 15 at 2:54
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
$endgroup$
Hint: $$left( frackk+1 right)^k sim e^-1 $$
answered Apr 15 at 2:38
Robert IsraelRobert Israel
345k23 gold badges241 silver badges503 bronze badges
345k23 gold badges241 silver badges503 bronze badges
add a comment |
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
$endgroup$
$$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$
$$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
$$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
$$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$
answered Apr 15 at 5:25
Claude LeiboviciClaude Leibovici
133k11 gold badges61 silver badges142 bronze badges
133k11 gold badges61 silver badges142 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:38
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– radius
Apr 15 at 2:40
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
Apr 15 at 2:44
1
$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
Apr 15 at 3:14