What is the value of $frac11+frac13-frac15-frac17+frac19+frac111-dots$?Find the sum of $sum 1/(k^2 - a^2)$ when $0<a<1$What is the value of $sum_n=1^infty frac1n^1+varepsilon$?Calculating the infinite series $1-frac13+frac15-frac17+frac19-frac111cdots$Another SummationInfinite summation convergenceElementary way to calculate the series $sumlimits_n=1^inftyfracH_nn2^n$Convergence of $1+frac13-frac12+frac15+frac17-frac14+frac19+frac111-frac16+ldots$What is the exact value of $sumlimits_x=1^∞frac1x^x$?

Scalar `new T` vs array `new T[1]`

How stable are PID loops really?

How to read a file line by line in Julia?

This fell out of my toilet when I unscrewed the supply line. What is it?

What does a "le" mean between subject and verb?

Solving the recurrence relation T(n) = 2T(n/2) + nlog n via summation

What is the next number in the series: 21, 21, 23, 20, 5, 25, 31, 24,?

Why does allocating a single 2D array take longer than a loop allocating multiple 1D arrays of the same total size and shape?

Meaning/translation of title "The Light Fantastic" By Terry Pratchett

"Es gefällt ihm." How to identify similar exceptions?

Iron-age tools, is there a way to extract heavy metals out of a creature?

universal string conversion

Find the percentage

What if you can't publish in very high impact journal or top conference during your PhD?

Are Ground Crew Airline or Airport Personnel?

Is having your hand in your pocket during a presentation bad?

I am measuring a 9W LED with a clamp on ammeter. Why does it only draw 7.62W?

Self-learning Calculus. Where does Lang's First Course in Calculus stay when compared to Apostol/Spivak/Courant

A goat is tied to the corner of a shed

What is the fastest way to move in Borderlands 3?

How are steel imports supposed to threaten US national security?

What do you call the fallacy of thinking that some action A will guarantee some outcome B, when in reality B depends on multiple other conditions?

Can a Dragon enter the feywild at will?

Injection from two strings to one string



What is the value of $frac11+frac13-frac15-frac17+frac19+frac111-dots$?


Find the sum of $sum 1/(k^2 - a^2)$ when $0<a<1$What is the value of $sum_n=1^infty frac1n^1+varepsilon$?Calculating the infinite series $1-frac13+frac15-frac17+frac19-frac111cdots$Another SummationInfinite summation convergenceElementary way to calculate the series $sumlimits_n=1^inftyfracH_nn2^n$Convergence of $1+frac13-frac12+frac15+frac17-frac14+frac19+frac111-frac16+ldots$What is the exact value of $sumlimits_x=1^∞frac1x^x$?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;

.everyonelovesstackoverflowposition:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;








6












$begingroup$


The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.



The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.




What is the convergence value, explicitly, of the second series?




The first summation is noted above, because it might be a useful information to evaluate the second summation.










share|cite|improve this question











$endgroup$









  • 1




    $begingroup$
    Wolfram says the result is $fracsqrt2pi4$
    $endgroup$
    – Peter Foreman
    Apr 17 at 10:28










  • $begingroup$
    @PeterForeman yes, but how to approach that value?
    $endgroup$
    – Hussain-Alqatari
    Apr 17 at 10:40

















6












$begingroup$


The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.



The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.




What is the convergence value, explicitly, of the second series?




The first summation is noted above, because it might be a useful information to evaluate the second summation.










share|cite|improve this question











$endgroup$









  • 1




    $begingroup$
    Wolfram says the result is $fracsqrt2pi4$
    $endgroup$
    – Peter Foreman
    Apr 17 at 10:28










  • $begingroup$
    @PeterForeman yes, but how to approach that value?
    $endgroup$
    – Hussain-Alqatari
    Apr 17 at 10:40













6












6








6


5



$begingroup$


The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.



The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.




What is the convergence value, explicitly, of the second series?




The first summation is noted above, because it might be a useful information to evaluate the second summation.










share|cite|improve this question











$endgroup$




The series $sum_k=1^infty frac(-1)^k+12k-1=frac11-frac13+frac15-frac17+dots$ converges to $fracpi4$. Here, the sign alternates every term.



The series $displaystylesum_k=1^infty (-1)^left(k^2 + k + 2right)/2 over 2k-1=frac11+frac13-frac15-frac17+dots$ also converges. Here, the sign alternates every two terms.




What is the convergence value, explicitly, of the second series?




The first summation is noted above, because it might be a useful information to evaluate the second summation.







sequences-and-series summation integers pi






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 26 at 6:11









Felix Marin

71.2k8 gold badges116 silver badges155 bronze badges




71.2k8 gold badges116 silver badges155 bronze badges










asked Apr 17 at 10:08









Hussain-AlqatariHussain-Alqatari

1,2411 silver badge14 bronze badges




1,2411 silver badge14 bronze badges










  • 1




    $begingroup$
    Wolfram says the result is $fracsqrt2pi4$
    $endgroup$
    – Peter Foreman
    Apr 17 at 10:28










  • $begingroup$
    @PeterForeman yes, but how to approach that value?
    $endgroup$
    – Hussain-Alqatari
    Apr 17 at 10:40












  • 1




    $begingroup$
    Wolfram says the result is $fracsqrt2pi4$
    $endgroup$
    – Peter Foreman
    Apr 17 at 10:28










  • $begingroup$
    @PeterForeman yes, but how to approach that value?
    $endgroup$
    – Hussain-Alqatari
    Apr 17 at 10:40







1




1




$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28




$begingroup$
Wolfram says the result is $fracsqrt2pi4$
$endgroup$
– Peter Foreman
Apr 17 at 10:28












$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40




$begingroup$
@PeterForeman yes, but how to approach that value?
$endgroup$
– Hussain-Alqatari
Apr 17 at 10:40










4 Answers
4






active

oldest

votes


















13














$begingroup$

Let $$beginalign
S_1&=1-frac15+frac19-1over13+dots\
S_2&=frac13-frac17+1over11-1over15+dots
endalign$$
so that the sum we seek is $S_1+S_2.$
T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$



The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.






share|cite|improve this answer









$endgroup$










  • 4




    $begingroup$
    How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
    $endgroup$
    – Hussain-Alqatari
    Apr 17 at 12:56











  • $begingroup$
    Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
    $endgroup$
    – Michael Seifert
    Apr 17 at 14:11


















4














$begingroup$

Hint:



$$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$



$$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$



$$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$



$$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
$$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$



then use
$$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$






share|cite|improve this answer











$endgroup$






















    1














    $begingroup$

    $$
    beginalign
    &sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
    &=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
    &=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
    &=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
    &=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
    &=fracpisqrt24tag5
    endalign
    $$

    Explanation:
    $(1)$: separate two absolutely convergent series
    $(2)$: each series can be written as a sum over $mathbbZ$
    $(3)$: factor $frac18$ out of each series
    $(4)$: apply $(7)$ from this answer
    $(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$






    share|cite|improve this answer











    $endgroup$














    • $begingroup$
      For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
      $endgroup$
      – robjohn
      Apr 18 at 12:05



















    1














    $begingroup$

    $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
    newcommandbraces[1]leftlbrace,#1,rightrbrace
    newcommandbracks[1]leftlbrack,#1,rightrbrack
    newcommandddmathrmd
    newcommandds[1]displaystyle#1
    newcommandexpo[1],mathrme^#1,
    newcommandicmathrmi
    newcommandmc[1]mathcal#1
    newcommandmrm[1]mathrm#1
    newcommandpars[1]left(,#1,right)
    newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
    newcommandroot[2][],sqrt[#1],#2,,
    newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
    newcommandverts[1]leftvert,#1,rightvert$

    beginalign
    &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
    - 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
    sum_n = 0^inftypars-1^n
    sum_k = 2n + 1^2n + 21 over 2k - 1
    \[5mm] = &
    sum_n = 0^inftypars-1^n
    sum_k = 0^11 over 2k + 4n + 1 =
    sum_k = 0^1sum_n = 0^infty
    pars-1^n over 4n + 2k + 1
    \[5mm] = &
    sum_k = 0^1sum_n = 0^inftypars-1^n
    int_0^1t^4n + 2k,dd t =
    sum_k = 0^1int_0^1t^2k
    sum_n = 0^inftypars-t^4^n,dd t
    \[5mm] = &
    sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
    sum_k = 0^1int_0^1t^2k - t^2k + 4 over
    1 - t^8,dd t
    \[5mm] = &
    1 over 8sum_k = 0^1int_0^1
    t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
    \[5mm] = &
    1 over 8sum_k = 0^1bracks%
    Psiparsk over 4 + 5 over 8 -
    Psiparsk over 4 + 1 over 8
    endalign




    where $dsPsi$ is the Digamma Function.




    Then,
    beginalign
    &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
    - 1 over 7 + 1 over 9 + 1 over 11 - cdots
    \[5mm] = &
    bracksPsipars5/8 - Psipars1/8 +
    bracksPsipars7/8 - Psipars3/8 over 8
    \[5mm] = &
    bracksPsipars5/8 - Psipars3/8 +
    bracksPsipars7/8 - Psipars1/8 over 8
    endalign




    With
    Euler Reflection Formula:




    beginalign
    &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
    - 1 over 7 + 1 over 9 + 1 over 11 - cdots =
    picotpars3pi/8 + picotparspi/8 over 8
    \[5mm] = &
    pi,tanparspi/8 + cotparspi/8 over 8 =
    pi over 8sinparspi/8cosparspi/8 =
    pi over 4sinparspi/4
    \[5mm] = &
    pi over 4parsroot2/2 =
    bbxroot2 over 4,pi approx 1.1107
    endalign






    share|cite|improve this answer











    $endgroup$
















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );














      draft saved

      draft discarded
















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190908%2fwhat-is-the-value-of-frac11-frac13-frac15-frac17-frac19-frac111-dots%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      13














      $begingroup$

      Let $$beginalign
      S_1&=1-frac15+frac19-1over13+dots\
      S_2&=frac13-frac17+1over11-1over15+dots
      endalign$$
      so that the sum we seek is $S_1+S_2.$
      T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
      and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
      By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$



      The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.






      share|cite|improve this answer









      $endgroup$










      • 4




        $begingroup$
        How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
        $endgroup$
        – Hussain-Alqatari
        Apr 17 at 12:56











      • $begingroup$
        Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
        $endgroup$
        – Michael Seifert
        Apr 17 at 14:11















      13














      $begingroup$

      Let $$beginalign
      S_1&=1-frac15+frac19-1over13+dots\
      S_2&=frac13-frac17+1over11-1over15+dots
      endalign$$
      so that the sum we seek is $S_1+S_2.$
      T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
      and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
      By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$



      The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.






      share|cite|improve this answer









      $endgroup$










      • 4




        $begingroup$
        How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
        $endgroup$
        – Hussain-Alqatari
        Apr 17 at 12:56











      • $begingroup$
        Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
        $endgroup$
        – Michael Seifert
        Apr 17 at 14:11













      13














      13










      13







      $begingroup$

      Let $$beginalign
      S_1&=1-frac15+frac19-1over13+dots\
      S_2&=frac13-frac17+1over11-1over15+dots
      endalign$$
      so that the sum we seek is $S_1+S_2.$
      T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
      and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
      By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$



      The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.






      share|cite|improve this answer









      $endgroup$



      Let $$beginalign
      S_1&=1-frac15+frac19-1over13+dots\
      S_2&=frac13-frac17+1over11-1over15+dots
      endalign$$
      so that the sum we seek is $S_1+S_2.$
      T0 compute $S_1,$ consider $$f(x) = 1-x^5over5+x^9over9-x^13over13+dots$$ so that $$f'(x)=-x^4+x^8-x^12+dots=-x^4over1+x^4, |x|<1$$
      and $$f(x)=int_0^x-t^4over1+t^4mathrmdt+f(0), |x|<1$$
      By Abel's limit theorem, $$S_1=lim_xto1-int_0^x-t^4over1+t^4mathrmdt+f(0)=1-int_0^1t^4over1+t^4mathrmdt$$ and we can do a similar calculation for $S_2$ to get $$S_2=int_0^1t^2over1+t^4mathrmdt$$



      The integrals are elementary, but tedious, and I leave them to you. (Frankly, I would do them by typing them into WolframAlpha. You can get the indefinite integrals, and check them by differentiation if you want to.) If you really want to do them by hand, I think it's easiest to consider only the definite integrals, and split the denominator into linear factors using complex numbers, but I don't know if you've learned about complex integrals yet.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Apr 17 at 11:03









      saulspatzsaulspatz

      24.6k4 gold badges16 silver badges41 bronze badges




      24.6k4 gold badges16 silver badges41 bronze badges










      • 4




        $begingroup$
        How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
        $endgroup$
        – Hussain-Alqatari
        Apr 17 at 12:56











      • $begingroup$
        Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
        $endgroup$
        – Michael Seifert
        Apr 17 at 14:11












      • 4




        $begingroup$
        How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
        $endgroup$
        – Hussain-Alqatari
        Apr 17 at 12:56











      • $begingroup$
        Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
        $endgroup$
        – Michael Seifert
        Apr 17 at 14:11







      4




      4




      $begingroup$
      How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
      $endgroup$
      – Hussain-Alqatari
      Apr 17 at 12:56





      $begingroup$
      How awesome is your answer?! Thank you very much. I got it. I will try to find the convergence value when the signs of the terms alternate every three terms.
      $endgroup$
      – Hussain-Alqatari
      Apr 17 at 12:56













      $begingroup$
      Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
      $endgroup$
      – Michael Seifert
      Apr 17 at 14:11




      $begingroup$
      Note that $S_1 = int_0^1 mathrmdt -int_0^1t^4over1+t^4mathrmdt = int_0^11over1+t^4mathrmdt$, which might be marginally easier to integrate.
      $endgroup$
      – Michael Seifert
      Apr 17 at 14:11













      4














      $begingroup$

      Hint:



      $$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$



      $$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$



      $$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$



      $$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
      $$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$



      then use
      $$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$






      share|cite|improve this answer











      $endgroup$



















        4














        $begingroup$

        Hint:



        $$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$



        $$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$



        $$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$



        $$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
        $$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$



        then use
        $$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$






        share|cite|improve this answer











        $endgroup$

















          4














          4










          4







          $begingroup$

          Hint:



          $$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$



          $$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$



          $$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$



          $$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
          $$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$



          then use
          $$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$






          share|cite|improve this answer











          $endgroup$



          Hint:



          $$frac11+frac13-frac15-frac17+dots=sum_k=1^infty frac18k-7+frac18k-5-frac18k-3-frac18k-1$$



          $$=sum_k=1^infty (frac18k-7-frac18k-1)+(frac18k-5-frac18k-3)$$



          $$=sum_k=1^infty (1+frac18k+1-frac18k-1)+(frac13+frac18k+3-frac18k-3)$$



          $$=frac43+sum_k=1^infty (frac-264k^2-1+frac-664k^2-9)$$
          $$=frac43-frac132sum_k=1^infty frac1k^2-frac164-frac332sum_k=1^infty frac1k^2-frac964$$



          then use
          $$frac1-pi x cot(pi x)2x^2=sum_k=1^infty frac1k^2-x^2$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 17 at 14:52

























          answered Apr 17 at 12:30









          E.H.EE.H.E

          18.6k1 gold badge20 silver badges70 bronze badges




          18.6k1 gold badge20 silver badges70 bronze badges
























              1














              $begingroup$

              $$
              beginalign
              &sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
              &=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
              &=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
              &=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
              &=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
              &=fracpisqrt24tag5
              endalign
              $$

              Explanation:
              $(1)$: separate two absolutely convergent series
              $(2)$: each series can be written as a sum over $mathbbZ$
              $(3)$: factor $frac18$ out of each series
              $(4)$: apply $(7)$ from this answer
              $(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$






              share|cite|improve this answer











              $endgroup$














              • $begingroup$
                For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
                $endgroup$
                – robjohn
                Apr 18 at 12:05
















              1














              $begingroup$

              $$
              beginalign
              &sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
              &=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
              &=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
              &=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
              &=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
              &=fracpisqrt24tag5
              endalign
              $$

              Explanation:
              $(1)$: separate two absolutely convergent series
              $(2)$: each series can be written as a sum over $mathbbZ$
              $(3)$: factor $frac18$ out of each series
              $(4)$: apply $(7)$ from this answer
              $(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$






              share|cite|improve this answer











              $endgroup$














              • $begingroup$
                For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
                $endgroup$
                – robjohn
                Apr 18 at 12:05














              1














              1










              1







              $begingroup$

              $$
              beginalign
              &sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
              &=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
              &=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
              &=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
              &=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
              &=fracpisqrt24tag5
              endalign
              $$

              Explanation:
              $(1)$: separate two absolutely convergent series
              $(2)$: each series can be written as a sum over $mathbbZ$
              $(3)$: factor $frac18$ out of each series
              $(4)$: apply $(7)$ from this answer
              $(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$






              share|cite|improve this answer











              $endgroup$



              $$
              beginalign
              &sum_k=0^inftyleft(frac18k+1+frac18k+3-frac18k+5-frac18k+7right)\
              &=sum_k=0^inftyleft(frac18k+1-frac18k+7right)+sum_k=0^inftyleft(frac18k+3-frac18k+5right)tag1\
              &=sum_kinmathbbZfrac18k+1+sum_kinmathbbZfrac18k+3tag2\
              &=frac18sum_kinmathbbZfrac1k+frac18+frac18sum_kinmathbbZfrac1k+frac38tag3\
              &=fracpi8left[cotleft(fracpi8right)+cotleft(frac3pi8right)right]tag4\[6pt]
              &=fracpisqrt24tag5
              endalign
              $$

              Explanation:
              $(1)$: separate two absolutely convergent series
              $(2)$: each series can be written as a sum over $mathbbZ$
              $(3)$: factor $frac18$ out of each series
              $(4)$: apply $(7)$ from this answer
              $(5)$: evaluate; $cotleft(fracpi8right)=1+sqrt2$ and $cotleft(frac3pi8right)=-1+sqrt2$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Apr 17 at 17:49

























              answered Apr 17 at 17:33









              robjohnrobjohn

              280k29 gold badges331 silver badges661 bronze badges




              280k29 gold badges331 silver badges661 bronze badges














              • $begingroup$
                For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
                $endgroup$
                – robjohn
                Apr 18 at 12:05

















              • $begingroup$
                For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
                $endgroup$
                – robjohn
                Apr 18 at 12:05
















              $begingroup$
              For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
              $endgroup$
              – robjohn
              Apr 18 at 12:05





              $begingroup$
              For sign change every $3$ terms, $cotleft(fracpi12right)=2+sqrt3$, $cotleft(frac3pi12right)=1$, $cotleft(frac5pi12right)=2-sqrt3$.
              $endgroup$
              – robjohn
              Apr 18 at 12:05












              1














              $begingroup$

              $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
              newcommandbraces[1]leftlbrace,#1,rightrbrace
              newcommandbracks[1]leftlbrack,#1,rightrbrack
              newcommandddmathrmd
              newcommandds[1]displaystyle#1
              newcommandexpo[1],mathrme^#1,
              newcommandicmathrmi
              newcommandmc[1]mathcal#1
              newcommandmrm[1]mathrm#1
              newcommandpars[1]left(,#1,right)
              newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
              newcommandroot[2][],sqrt[#1],#2,,
              newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
              newcommandverts[1]leftvert,#1,rightvert$

              beginalign
              &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
              - 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
              sum_n = 0^inftypars-1^n
              sum_k = 2n + 1^2n + 21 over 2k - 1
              \[5mm] = &
              sum_n = 0^inftypars-1^n
              sum_k = 0^11 over 2k + 4n + 1 =
              sum_k = 0^1sum_n = 0^infty
              pars-1^n over 4n + 2k + 1
              \[5mm] = &
              sum_k = 0^1sum_n = 0^inftypars-1^n
              int_0^1t^4n + 2k,dd t =
              sum_k = 0^1int_0^1t^2k
              sum_n = 0^inftypars-t^4^n,dd t
              \[5mm] = &
              sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
              sum_k = 0^1int_0^1t^2k - t^2k + 4 over
              1 - t^8,dd t
              \[5mm] = &
              1 over 8sum_k = 0^1int_0^1
              t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
              \[5mm] = &
              1 over 8sum_k = 0^1bracks%
              Psiparsk over 4 + 5 over 8 -
              Psiparsk over 4 + 1 over 8
              endalign




              where $dsPsi$ is the Digamma Function.




              Then,
              beginalign
              &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
              - 1 over 7 + 1 over 9 + 1 over 11 - cdots
              \[5mm] = &
              bracksPsipars5/8 - Psipars1/8 +
              bracksPsipars7/8 - Psipars3/8 over 8
              \[5mm] = &
              bracksPsipars5/8 - Psipars3/8 +
              bracksPsipars7/8 - Psipars1/8 over 8
              endalign




              With
              Euler Reflection Formula:




              beginalign
              &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
              - 1 over 7 + 1 over 9 + 1 over 11 - cdots =
              picotpars3pi/8 + picotparspi/8 over 8
              \[5mm] = &
              pi,tanparspi/8 + cotparspi/8 over 8 =
              pi over 8sinparspi/8cosparspi/8 =
              pi over 4sinparspi/4
              \[5mm] = &
              pi over 4parsroot2/2 =
              bbxroot2 over 4,pi approx 1.1107
              endalign






              share|cite|improve this answer











              $endgroup$



















                1














                $begingroup$

                $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                newcommandbraces[1]leftlbrace,#1,rightrbrace
                newcommandbracks[1]leftlbrack,#1,rightrbrack
                newcommandddmathrmd
                newcommandds[1]displaystyle#1
                newcommandexpo[1],mathrme^#1,
                newcommandicmathrmi
                newcommandmc[1]mathcal#1
                newcommandmrm[1]mathrm#1
                newcommandpars[1]left(,#1,right)
                newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                newcommandroot[2][],sqrt[#1],#2,,
                newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                newcommandverts[1]leftvert,#1,rightvert$

                beginalign
                &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                - 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
                sum_n = 0^inftypars-1^n
                sum_k = 2n + 1^2n + 21 over 2k - 1
                \[5mm] = &
                sum_n = 0^inftypars-1^n
                sum_k = 0^11 over 2k + 4n + 1 =
                sum_k = 0^1sum_n = 0^infty
                pars-1^n over 4n + 2k + 1
                \[5mm] = &
                sum_k = 0^1sum_n = 0^inftypars-1^n
                int_0^1t^4n + 2k,dd t =
                sum_k = 0^1int_0^1t^2k
                sum_n = 0^inftypars-t^4^n,dd t
                \[5mm] = &
                sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
                sum_k = 0^1int_0^1t^2k - t^2k + 4 over
                1 - t^8,dd t
                \[5mm] = &
                1 over 8sum_k = 0^1int_0^1
                t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
                \[5mm] = &
                1 over 8sum_k = 0^1bracks%
                Psiparsk over 4 + 5 over 8 -
                Psiparsk over 4 + 1 over 8
                endalign




                where $dsPsi$ is the Digamma Function.




                Then,
                beginalign
                &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                - 1 over 7 + 1 over 9 + 1 over 11 - cdots
                \[5mm] = &
                bracksPsipars5/8 - Psipars1/8 +
                bracksPsipars7/8 - Psipars3/8 over 8
                \[5mm] = &
                bracksPsipars5/8 - Psipars3/8 +
                bracksPsipars7/8 - Psipars1/8 over 8
                endalign




                With
                Euler Reflection Formula:




                beginalign
                &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                - 1 over 7 + 1 over 9 + 1 over 11 - cdots =
                picotpars3pi/8 + picotparspi/8 over 8
                \[5mm] = &
                pi,tanparspi/8 + cotparspi/8 over 8 =
                pi over 8sinparspi/8cosparspi/8 =
                pi over 4sinparspi/4
                \[5mm] = &
                pi over 4parsroot2/2 =
                bbxroot2 over 4,pi approx 1.1107
                endalign






                share|cite|improve this answer











                $endgroup$

















                  1














                  1










                  1







                  $begingroup$

                  $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                  newcommandbraces[1]leftlbrace,#1,rightrbrace
                  newcommandbracks[1]leftlbrack,#1,rightrbrack
                  newcommandddmathrmd
                  newcommandds[1]displaystyle#1
                  newcommandexpo[1],mathrme^#1,
                  newcommandicmathrmi
                  newcommandmc[1]mathcal#1
                  newcommandmrm[1]mathrm#1
                  newcommandpars[1]left(,#1,right)
                  newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                  newcommandroot[2][],sqrt[#1],#2,,
                  newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                  newcommandverts[1]leftvert,#1,rightvert$

                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
                  sum_n = 0^inftypars-1^n
                  sum_k = 2n + 1^2n + 21 over 2k - 1
                  \[5mm] = &
                  sum_n = 0^inftypars-1^n
                  sum_k = 0^11 over 2k + 4n + 1 =
                  sum_k = 0^1sum_n = 0^infty
                  pars-1^n over 4n + 2k + 1
                  \[5mm] = &
                  sum_k = 0^1sum_n = 0^inftypars-1^n
                  int_0^1t^4n + 2k,dd t =
                  sum_k = 0^1int_0^1t^2k
                  sum_n = 0^inftypars-t^4^n,dd t
                  \[5mm] = &
                  sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
                  sum_k = 0^1int_0^1t^2k - t^2k + 4 over
                  1 - t^8,dd t
                  \[5mm] = &
                  1 over 8sum_k = 0^1int_0^1
                  t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
                  \[5mm] = &
                  1 over 8sum_k = 0^1bracks%
                  Psiparsk over 4 + 5 over 8 -
                  Psiparsk over 4 + 1 over 8
                  endalign




                  where $dsPsi$ is the Digamma Function.




                  Then,
                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots
                  \[5mm] = &
                  bracksPsipars5/8 - Psipars1/8 +
                  bracksPsipars7/8 - Psipars3/8 over 8
                  \[5mm] = &
                  bracksPsipars5/8 - Psipars3/8 +
                  bracksPsipars7/8 - Psipars1/8 over 8
                  endalign




                  With
                  Euler Reflection Formula:




                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots =
                  picotpars3pi/8 + picotparspi/8 over 8
                  \[5mm] = &
                  pi,tanparspi/8 + cotparspi/8 over 8 =
                  pi over 8sinparspi/8cosparspi/8 =
                  pi over 4sinparspi/4
                  \[5mm] = &
                  pi over 4parsroot2/2 =
                  bbxroot2 over 4,pi approx 1.1107
                  endalign






                  share|cite|improve this answer











                  $endgroup$



                  $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                  newcommandbraces[1]leftlbrace,#1,rightrbrace
                  newcommandbracks[1]leftlbrack,#1,rightrbrack
                  newcommandddmathrmd
                  newcommandds[1]displaystyle#1
                  newcommandexpo[1],mathrme^#1,
                  newcommandicmathrmi
                  newcommandmc[1]mathcal#1
                  newcommandmrm[1]mathrm#1
                  newcommandpars[1]left(,#1,right)
                  newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                  newcommandroot[2][],sqrt[#1],#2,,
                  newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                  newcommandverts[1]leftvert,#1,rightvert$

                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots equiv
                  sum_n = 0^inftypars-1^n
                  sum_k = 2n + 1^2n + 21 over 2k - 1
                  \[5mm] = &
                  sum_n = 0^inftypars-1^n
                  sum_k = 0^11 over 2k + 4n + 1 =
                  sum_k = 0^1sum_n = 0^infty
                  pars-1^n over 4n + 2k + 1
                  \[5mm] = &
                  sum_k = 0^1sum_n = 0^inftypars-1^n
                  int_0^1t^4n + 2k,dd t =
                  sum_k = 0^1int_0^1t^2k
                  sum_n = 0^inftypars-t^4^n,dd t
                  \[5mm] = &
                  sum_k = 0^1int_0^1t^2k over 1 + t^4,dd t =
                  sum_k = 0^1int_0^1t^2k - t^2k + 4 over
                  1 - t^8,dd t
                  \[5mm] = &
                  1 over 8sum_k = 0^1int_0^1
                  t^k/4 - 7/8 - t^k/4 - 3/8 over 1 - t,dd t
                  \[5mm] = &
                  1 over 8sum_k = 0^1bracks%
                  Psiparsk over 4 + 5 over 8 -
                  Psiparsk over 4 + 1 over 8
                  endalign




                  where $dsPsi$ is the Digamma Function.




                  Then,
                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots
                  \[5mm] = &
                  bracksPsipars5/8 - Psipars1/8 +
                  bracksPsipars7/8 - Psipars3/8 over 8
                  \[5mm] = &
                  bracksPsipars5/8 - Psipars3/8 +
                  bracksPsipars7/8 - Psipars1/8 over 8
                  endalign




                  With
                  Euler Reflection Formula:




                  beginalign
                  &bbox[10px,#ffd]1 over 1 + 1 over 3 - 1 over 5
                  - 1 over 7 + 1 over 9 + 1 over 11 - cdots =
                  picotpars3pi/8 + picotparspi/8 over 8
                  \[5mm] = &
                  pi,tanparspi/8 + cotparspi/8 over 8 =
                  pi over 8sinparspi/8cosparspi/8 =
                  pi over 4sinparspi/4
                  \[5mm] = &
                  pi over 4parsroot2/2 =
                  bbxroot2 over 4,pi approx 1.1107
                  endalign







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 26 at 7:41

























                  answered Apr 26 at 7:01









                  Felix MarinFelix Marin

                  71.2k8 gold badges116 silver badges155 bronze badges




                  71.2k8 gold badges116 silver badges155 bronze badges































                      draft saved

                      draft discarded















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190908%2fwhat-is-the-value-of-frac11-frac13-frac15-frac17-frac19-frac111-dots%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Tamil (spriik) Luke uk diar | Nawigatjuun

                      Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

                      Where does the image of a data connector as a sharp metal spike originate from?Where does the concept of infected people turning into zombies only after death originate from?Where does the motif of a reanimated human head originate?Where did the notion that Dragons could speak originate?Where does the archetypal image of the 'Grey' alien come from?Where did the suffix '-Man' originate?Where does the notion of being injured or killed by an illusion originate?Where did the term “sophont” originate?Where does the trope of magic spells being driven by advanced technology originate from?Where did the term “the living impaired” originate?