Skip to main content

Kanton Quettehou Gemeinden | Navigationsmenü

Ehemaliger Kanton im Département MancheAufgelöst 2015


französischerKantonArrondissement CherbourgDépartement MancheRegionBasse-NormandieQuettehouAgon-CoutainvilleAvranchesBréhalBricquebecCarentanCherbourg-Octeville-1Cherbourg-Octeville-2Cherbourg-Octeville-3Condé-sur-VireCoutancesCréancesÉqueurdreville-HainnevilleGranvilleLa HagueIsigny-le-BuatLe MortainaisLes PieuxPont-HébertPontorsonQuettreville-sur-SienneSaint-Hilaire-du-HarcouëtSaint-Lô-1Saint-Lô-2TourlavilleValognesVal-de-SaireVilledieu-les-Poêles












Kanton Quettehou




aus Wikipedia, der freien Enzyklopädie






Zur Navigation springen
Zur Suche springen






















Ehemaliger
Kanton Quettehou

Region

Basse-Normandie

Département

Manche

Arrondissement

Cherbourg

Hauptort

Quettehou
Auflösungsdatum
29. März 2015

Einwohner
9.053 (1. Jan. 2012)

Bevölkerungsdichte
81 Einw./km²

Fläche
112 km²

Gemeinden
16

INSEE-Code
5030

Der Kanton Quettehou war bis 2015 ein französischer Kanton im Arrondissement Cherbourg, im Département Manche und in der Region Basse-Normandie. Sein Hauptort war Quettehou.


Der Kanton Quettehou hatte am 1. Januar 2012 9.053 Einwohner.



Gemeinden |


Der Kanton bestand aus 16 Gemeinden:








































































































GemeindeEinwohner Jahr
Fläche km²
BevölkerungsdichteCode INSEEPostleitzahl
Anneville-en-Saire389 (2013)
– –  Einw./km²5001350760
Aumeville-Lestre136 (2013)
– –  Einw./km²5002250630
Barfleur621 (2013)
– –  Einw./km²5003050760
Crasville262 (2013)
– –  Einw./km²5015050630
Montfarville800 (2013)
– –  Einw./km²5034250760
Morsalines201 (2013)
– –  Einw./km²5035850630
Octeville-l’Avenel202 (2013)
– –  Einw./km²5038450630
La Pernelle248 (2013)
– –  Einw./km²5039550630
Quettehou1.586 (2013)
– –  Einw./km²5041750630
Réville1.173 (2013)
– –  Einw./km²5043350760
Sainte-Geneviève318 (2013)
– –  Einw./km²5046950760
Saint-Vaast-la-Hougue1.896 (2013)
– –  Einw./km²5056250550
Teurthéville-Bocage601 (2013)
– –  Einw./km²5059350630
Valcanville382 (2013)
– –  Einw./km²5061350760
Le Vicel139 (2013)
– –  Einw./km²5063350760
Videcosville85 (2013)
– –  Einw./km²5063450630

.mw-parser-output div.NavFrameborder:1px solid #A2A9B1;clear:both;font-size:95%;margin-top:1.5em;min-height:0;padding:2px;text-align:center.mw-parser-output div.NavPicfloat:left;padding:2px.mw-parser-output div.NavHeadbackground-color:#EAECF0;font-weight:bold.mw-parser-output div.NavFrame:afterclear:both;content:"";display:block.mw-parser-output div.NavFrame+div.NavFrame,.mw-parser-output div.NavFrame+link+div.NavFramemargin-top:-1px.mw-parser-output .NavTogglefloat:right;font-size:x-small








Abgerufen von „https://de.wikipedia.org/w/index.php?title=Kanton_Quettehou&oldid=184810586“













Navigationsmenü


























(RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.136","walltime":"0.185","ppvisitednodes":"value":1040,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":22133,"limit":2097152,"templateargumentsize":"value":12921,"limit":2097152,"expansiondepth":"value":15,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":611,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 147.785 1 -total"," 51.76% 76.494 1 Vorlage:Infobox_französischer_Kanton"," 48.12% 71.107 1 Vorlage:Navigationsleiste_Kantone_im_Département_Manche"," 43.33% 64.039 1 Vorlage:Erweiterte_Navigationsleiste"," 32.66% 48.267 1 Vorlage:INSEE-ISO_3166-2"," 21.11% 31.201 1 Vorlage:NavFrame"," 17.42% 25.742 1 Vorlage:Str_len"," 12.23% 18.077 6 Vorlage:Str_left"," 9.47% 13.993 1 Vorlage:FormatDate"," 7.20% 10.634 32 Vorlage:Erweiterte_Navigationsleiste/Kern"],"scribunto":"limitreport-timeusage":"value":"0.012","limit":"10.000","limitreport-memusage":"value":930898,"limit":52428800,"cachereport":"origin":"mw1325","timestamp":"20191121160714","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Kanton Quettehou","url":"https://de.wikipedia.org/wiki/Kanton_Quettehou","sameAs":"http://www.wikidata.org/entity/Q785311","mainEntity":"http://www.wikidata.org/entity/Q785311","author":"@type":"Organization","name":"Autoren der Wikimedia-Projekte","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2008-07-02T23:39:35Z","headline":"franzu00f6sische Verwaltungseinheit"(RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":110,"wgHostname":"mw1273"););

Popular posts from this blog

Tamil (spriik) Luke uk diar | Nawigatjuun

Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?