Symmetry in quantum mechanics The 2019 Stack Overflow Developer Survey Results Are InSymmetry transformations on a quantum system; DefinitionsQuantum mechanics and Lorentz symmetryGenerators of a certain symmetry in Quantum MechanicsEquivalence of symmetry and commuting unitary operatorConcrete example that projective representation of symmetry group occurs in a quantum system except the case of spin half integer?Symmetry transformations on a quantum system; DefinitionsWhat is the definition of parity operator in quantum mechanics?Symmetry of Hamiltonian in harmonic oscillatorDifference between symmetry transformation and basis transformationSymmetries in quantum mechanicsWhat happens to the global $U(1)$ symmetry in alternative formulations of Quantum Mechanics?
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
Shouldn't "much" here be used instead of "more"?
Can one be advised by a professor who is very far away?
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
slides for 30min~1hr skype tenure track application interview
How technical should a Scrum Master be to effectively remove impediments?
Button changing it's text & action. Good or terrible?
Time travel alters history but people keep saying nothing's changed
Is flight data recorder erased after every flight?
How to notate time signature switching consistently every measure
Is a "Democratic" Oligarchy-Style System Possible?
Is there any way to tell whether the shot is going to hit you or not?
Loose spokes after only a few rides
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
Can you compress metal and what would be the consequences?
How are circuits which use complex ICs normally simulated?
Resizing object distorts it (Illustrator CC 2018)
How to support a colleague who finds meetings extremely tiring?
Why is the maximum length of OpenWrt’s root password 8 characters?
What is the most effective way of iterating a std::vector and why?
Is this app Icon Browser Safe/Legit?
Deal with toxic manager when you can't quit
Symmetry in quantum mechanics
The 2019 Stack Overflow Developer Survey Results Are InSymmetry transformations on a quantum system; DefinitionsQuantum mechanics and Lorentz symmetryGenerators of a certain symmetry in Quantum MechanicsEquivalence of symmetry and commuting unitary operatorConcrete example that projective representation of symmetry group occurs in a quantum system except the case of spin half integer?Symmetry transformations on a quantum system; DefinitionsWhat is the definition of parity operator in quantum mechanics?Symmetry of Hamiltonian in harmonic oscillatorDifference between symmetry transformation and basis transformationSymmetries in quantum mechanicsWhat happens to the global $U(1)$ symmetry in alternative formulations of Quantum Mechanics?
$begingroup$
My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$
Can you give me an easy explanation for this definition?
quantum-mechanics operators symmetry hamiltonian commutator
$endgroup$
add a comment |
$begingroup$
My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$
Can you give me an easy explanation for this definition?
quantum-mechanics operators symmetry hamiltonian commutator
$endgroup$
add a comment |
$begingroup$
My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$
Can you give me an easy explanation for this definition?
quantum-mechanics operators symmetry hamiltonian commutator
$endgroup$
My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$
Can you give me an easy explanation for this definition?
quantum-mechanics operators symmetry hamiltonian commutator
quantum-mechanics operators symmetry hamiltonian commutator
edited 2 days ago
Qmechanic♦
107k122001241
107k122001241
asked 2 days ago
SimoBartzSimoBartz
1017
1017
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.
In this case, the equation of motion is the Schrödinger equation
$$
ihbarfracddtpsi=Hpsi.
tag1
$$
We can multiply both sides of equation (1) by $U$ to get
$$
Uihbarfracddtpsi=UHpsi.
tag2
$$
If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
$$
ihbarfracddtUpsi=HUpsi.
tag3
$$
which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.
For a more general definition of symmetry in QM, see
Symmetry transformations on a quantum system; Definitions
$endgroup$
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
add a comment |
$begingroup$
What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
Uleft(t-t_0right)=e^-ileft(t-t_0right) H
endalign*
If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
$left[Uleft(t-t_0right), Pright]=0$
then also
$$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.
Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
beginalign*
[A, P]=0
endalign*
for all $Pin S_N$ (in permutation group of $N$ particles).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471292%2fsymmetry-in-quantum-mechanics%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.
In this case, the equation of motion is the Schrödinger equation
$$
ihbarfracddtpsi=Hpsi.
tag1
$$
We can multiply both sides of equation (1) by $U$ to get
$$
Uihbarfracddtpsi=UHpsi.
tag2
$$
If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
$$
ihbarfracddtUpsi=HUpsi.
tag3
$$
which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.
For a more general definition of symmetry in QM, see
Symmetry transformations on a quantum system; Definitions
$endgroup$
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
add a comment |
$begingroup$
In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.
In this case, the equation of motion is the Schrödinger equation
$$
ihbarfracddtpsi=Hpsi.
tag1
$$
We can multiply both sides of equation (1) by $U$ to get
$$
Uihbarfracddtpsi=UHpsi.
tag2
$$
If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
$$
ihbarfracddtUpsi=HUpsi.
tag3
$$
which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.
For a more general definition of symmetry in QM, see
Symmetry transformations on a quantum system; Definitions
$endgroup$
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
add a comment |
$begingroup$
In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.
In this case, the equation of motion is the Schrödinger equation
$$
ihbarfracddtpsi=Hpsi.
tag1
$$
We can multiply both sides of equation (1) by $U$ to get
$$
Uihbarfracddtpsi=UHpsi.
tag2
$$
If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
$$
ihbarfracddtUpsi=HUpsi.
tag3
$$
which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.
For a more general definition of symmetry in QM, see
Symmetry transformations on a quantum system; Definitions
$endgroup$
In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.
In this case, the equation of motion is the Schrödinger equation
$$
ihbarfracddtpsi=Hpsi.
tag1
$$
We can multiply both sides of equation (1) by $U$ to get
$$
Uihbarfracddtpsi=UHpsi.
tag2
$$
If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
$$
ihbarfracddtUpsi=HUpsi.
tag3
$$
which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.
For a more general definition of symmetry in QM, see
Symmetry transformations on a quantum system; Definitions
answered 2 days ago
Chiral AnomalyChiral Anomaly
13.5k21845
13.5k21845
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
add a comment |
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
3
3
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
This is a good answer but it brings to another question, why do we call symmetry this condition?
$endgroup$
– SimoBartz
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
$begingroup$
@SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
$endgroup$
– Chiral Anomaly
2 days ago
1
1
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
$endgroup$
– Vectornaut
2 days ago
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
@Vectornaut What if they answered yes to any of those? What would you say?
$endgroup$
– opa
yesterday
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
$begingroup$
Actually I'have never seen this concept before, my professor told us that when you have a symmetry transformation the system is invariant respect to that transformation. I imagine it means that nothing changes except the point of view. But if I transform a solution in another one maybe the new solution is completely different
$endgroup$
– SimoBartz
16 hours ago
add a comment |
$begingroup$
What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
Uleft(t-t_0right)=e^-ileft(t-t_0right) H
endalign*
If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
$left[Uleft(t-t_0right), Pright]=0$
then also
$$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.
Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
beginalign*
[A, P]=0
endalign*
for all $Pin S_N$ (in permutation group of $N$ particles).
$endgroup$
add a comment |
$begingroup$
What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
Uleft(t-t_0right)=e^-ileft(t-t_0right) H
endalign*
If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
$left[Uleft(t-t_0right), Pright]=0$
then also
$$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.
Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
beginalign*
[A, P]=0
endalign*
for all $Pin S_N$ (in permutation group of $N$ particles).
$endgroup$
add a comment |
$begingroup$
What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
Uleft(t-t_0right)=e^-ileft(t-t_0right) H
endalign*
If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
$left[Uleft(t-t_0right), Pright]=0$
then also
$$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.
Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
beginalign*
[A, P]=0
endalign*
for all $Pin S_N$ (in permutation group of $N$ particles).
$endgroup$
What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
Uleft(t-t_0right)=e^-ileft(t-t_0right) H
endalign*
If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
$left[Uleft(t-t_0right), Pright]=0$
then also
$$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.
Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
beginalign*
[A, P]=0
endalign*
for all $Pin S_N$ (in permutation group of $N$ particles).
answered 2 days ago
LeviathanLeviathan
747
747
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471292%2fsymmetry-in-quantum-mechanics%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown