What is the purpose of $frac1sigma sqrt2 pi$ in $frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Bound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionFind the standard deviation of $ fracgammasqrt2pisigmaexpleft(-fracgamma^2sigmafrac(x-mu)^22right)$How to compute normal integrals $int_-infty^inftyPhi(x)N(xmidmu,sigma^2),dx$ and $int_-infty^inftyPhi(x)N(xmidmu,sigma^2)x,dx$is this function increasing or decreasing on what intervals?Showing the expected value of $S_t^n$ where $S_t=S_0e^(r-fracsigma^22)t+sigma W_t$Deriving the Covariance of Multivariate GaussianGolden-Ratio Distribution - analogous to Normal distributiondelta method with $ frac1n sum (X_i - barX)^2 $What does determine if a distribution is Gaussian?Calculate $int_-infty^infty x^2e^-x^2 dx$ using Gaussian random variables and the properties of pdfs

What's the point in a preamp?

Make it rain characters

Word to describe a time interval

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

Nested ellipses in tikzpicture: Chomsky hierarchy

Do working physicists consider Newtonian mechanics to be "falsified"?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

What can I do if neighbor is blocking my solar panels intentionally?

Didn't get enough time to take a Coding Test - what to do now?

Why can I use a list index as an indexing variable in a for loop?

Can withdrawing asylum be illegal?

How did passengers keep warm on sail ships?

Does Parliament hold absolute power in the UK?

Deal with toxic manager when you can't quit

Why not take a picture of a closer black hole?

How many cones with angle theta can I pack into the unit sphere?

How to read αἱμύλιος or when to aspirate

Can a flute soloist sit?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Example of compact Riemannian manifold with only one geodesic.

Simulating Exploding Dice

How do you keep chess fun when your opponent constantly beats you?

Single author papers against my advisor's will?

Can I visit the Trinity College (Cambridge) library and see some of their rare books



What is the purpose of $frac1sigma sqrt2 pi$ in $frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Bound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionFind the standard deviation of $ fracgammasqrt2pisigmaexpleft(-fracgamma^2sigmafrac(x-mu)^22right)$How to compute normal integrals $int_-infty^inftyPhi(x)N(xmidmu,sigma^2),dx$ and $int_-infty^inftyPhi(x)N(xmidmu,sigma^2)x,dx$is this function increasing or decreasing on what intervals?Showing the expected value of $S_t^n$ where $S_t=S_0e^(r-fracsigma^22)t+sigma W_t$Deriving the Covariance of Multivariate GaussianGolden-Ratio Distribution - analogous to Normal distributiondelta method with $ frac1n sum (X_i - barX)^2 $What does determine if a distribution is Gaussian?Calculate $int_-infty^infty x^2e^-x^2 dx$ using Gaussian random variables and the properties of pdfs










2












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    2 days ago
















2












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    2 days ago














2












2








2





$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question











$endgroup$




I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?







probability statistics probability-distributions normal-distribution gaussian-integral






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









user21820

40.1k544162




40.1k544162










asked 2 days ago









BolboaBolboa

408616




408616







  • 2




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    2 days ago













  • 2




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    2 days ago








2




2




$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
2 days ago





$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
2 days ago











3 Answers
3






active

oldest

votes


















12












$begingroup$

If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    2 days ago



















6












$begingroup$

It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    As you have correctly stated, the p.d.f. of the normal distribution is given by $$f(xmidmu,sigma^2)=frac1sigmasqrt2piexpleft(-frac12left(fracx-musigmaright)^2right)$$ where the parameter space is $mathitTheta=(mu,sigma^2)inBbb R^2:sigma^2>0$. This is essentially saying that the mean is a value on the real line, and the variance is one on the positive real line.



    Now consider the simple case where $mu=0$ and $sigma^2=1$. Then the standard normal distribution has p.d.f. $$f(x)=frac1sqrt2piexpleft(-frac12x^2right).$$ If we integrate this in the interval $(-infty,infty)$, we will get $1$. This is by definition always the case as for all $xinmathit X$ (in this instance $mathit X=Bbb R$), $$int_mathit Xf(x),dx=1.$$ That is, the sum of all the probabilities of $x$ being in each region in $mathit X$ is $1$. In fact, the constant that makes this happen is so important in statistics (especially Bayesian statistics) that it is given a name: the normalising constant.



    A further example is the Beta distribution, with p.d.f. $$f(xmidalpha,beta)=fracx^alpha-1(1-x)^beta-1text B(alpha,beta)$$ where $1/text B(alpha,beta)$ is the normalising constant.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-frac1-sigma-sqrt2-pi-in-frac1-sigma-sqrt%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      12












      $begingroup$

      If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






      share|cite|improve this answer









      $endgroup$








      • 2




        $begingroup$
        (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
        $endgroup$
        – John Doe
        2 days ago
















      12












      $begingroup$

      If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






      share|cite|improve this answer









      $endgroup$








      • 2




        $begingroup$
        (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
        $endgroup$
        – John Doe
        2 days ago














      12












      12








      12





      $begingroup$

      If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






      share|cite|improve this answer









      $endgroup$



      If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 2 days ago









      CyclotomicFieldCyclotomicField

      2,6331316




      2,6331316







      • 2




        $begingroup$
        (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
        $endgroup$
        – John Doe
        2 days ago













      • 2




        $begingroup$
        (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
        $endgroup$
        – John Doe
        2 days ago








      2




      2




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      2 days ago





      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      2 days ago












      6












      $begingroup$

      It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






      share|cite|improve this answer









      $endgroup$

















        6












        $begingroup$

        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






        share|cite|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






          share|cite|improve this answer









          $endgroup$



          It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          GReyesGReyes

          2,48315




          2,48315





















              2












              $begingroup$

              As you have correctly stated, the p.d.f. of the normal distribution is given by $$f(xmidmu,sigma^2)=frac1sigmasqrt2piexpleft(-frac12left(fracx-musigmaright)^2right)$$ where the parameter space is $mathitTheta=(mu,sigma^2)inBbb R^2:sigma^2>0$. This is essentially saying that the mean is a value on the real line, and the variance is one on the positive real line.



              Now consider the simple case where $mu=0$ and $sigma^2=1$. Then the standard normal distribution has p.d.f. $$f(x)=frac1sqrt2piexpleft(-frac12x^2right).$$ If we integrate this in the interval $(-infty,infty)$, we will get $1$. This is by definition always the case as for all $xinmathit X$ (in this instance $mathit X=Bbb R$), $$int_mathit Xf(x),dx=1.$$ That is, the sum of all the probabilities of $x$ being in each region in $mathit X$ is $1$. In fact, the constant that makes this happen is so important in statistics (especially Bayesian statistics) that it is given a name: the normalising constant.



              A further example is the Beta distribution, with p.d.f. $$f(xmidalpha,beta)=fracx^alpha-1(1-x)^beta-1text B(alpha,beta)$$ where $1/text B(alpha,beta)$ is the normalising constant.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                As you have correctly stated, the p.d.f. of the normal distribution is given by $$f(xmidmu,sigma^2)=frac1sigmasqrt2piexpleft(-frac12left(fracx-musigmaright)^2right)$$ where the parameter space is $mathitTheta=(mu,sigma^2)inBbb R^2:sigma^2>0$. This is essentially saying that the mean is a value on the real line, and the variance is one on the positive real line.



                Now consider the simple case where $mu=0$ and $sigma^2=1$. Then the standard normal distribution has p.d.f. $$f(x)=frac1sqrt2piexpleft(-frac12x^2right).$$ If we integrate this in the interval $(-infty,infty)$, we will get $1$. This is by definition always the case as for all $xinmathit X$ (in this instance $mathit X=Bbb R$), $$int_mathit Xf(x),dx=1.$$ That is, the sum of all the probabilities of $x$ being in each region in $mathit X$ is $1$. In fact, the constant that makes this happen is so important in statistics (especially Bayesian statistics) that it is given a name: the normalising constant.



                A further example is the Beta distribution, with p.d.f. $$f(xmidalpha,beta)=fracx^alpha-1(1-x)^beta-1text B(alpha,beta)$$ where $1/text B(alpha,beta)$ is the normalising constant.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  As you have correctly stated, the p.d.f. of the normal distribution is given by $$f(xmidmu,sigma^2)=frac1sigmasqrt2piexpleft(-frac12left(fracx-musigmaright)^2right)$$ where the parameter space is $mathitTheta=(mu,sigma^2)inBbb R^2:sigma^2>0$. This is essentially saying that the mean is a value on the real line, and the variance is one on the positive real line.



                  Now consider the simple case where $mu=0$ and $sigma^2=1$. Then the standard normal distribution has p.d.f. $$f(x)=frac1sqrt2piexpleft(-frac12x^2right).$$ If we integrate this in the interval $(-infty,infty)$, we will get $1$. This is by definition always the case as for all $xinmathit X$ (in this instance $mathit X=Bbb R$), $$int_mathit Xf(x),dx=1.$$ That is, the sum of all the probabilities of $x$ being in each region in $mathit X$ is $1$. In fact, the constant that makes this happen is so important in statistics (especially Bayesian statistics) that it is given a name: the normalising constant.



                  A further example is the Beta distribution, with p.d.f. $$f(xmidalpha,beta)=fracx^alpha-1(1-x)^beta-1text B(alpha,beta)$$ where $1/text B(alpha,beta)$ is the normalising constant.






                  share|cite|improve this answer









                  $endgroup$



                  As you have correctly stated, the p.d.f. of the normal distribution is given by $$f(xmidmu,sigma^2)=frac1sigmasqrt2piexpleft(-frac12left(fracx-musigmaright)^2right)$$ where the parameter space is $mathitTheta=(mu,sigma^2)inBbb R^2:sigma^2>0$. This is essentially saying that the mean is a value on the real line, and the variance is one on the positive real line.



                  Now consider the simple case where $mu=0$ and $sigma^2=1$. Then the standard normal distribution has p.d.f. $$f(x)=frac1sqrt2piexpleft(-frac12x^2right).$$ If we integrate this in the interval $(-infty,infty)$, we will get $1$. This is by definition always the case as for all $xinmathit X$ (in this instance $mathit X=Bbb R$), $$int_mathit Xf(x),dx=1.$$ That is, the sum of all the probabilities of $x$ being in each region in $mathit X$ is $1$. In fact, the constant that makes this happen is so important in statistics (especially Bayesian statistics) that it is given a name: the normalising constant.



                  A further example is the Beta distribution, with p.d.f. $$f(xmidalpha,beta)=fracx^alpha-1(1-x)^beta-1text B(alpha,beta)$$ where $1/text B(alpha,beta)$ is the normalising constant.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  TheSimpliFireTheSimpliFire

                  13.2k62464




                  13.2k62464



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-frac1-sigma-sqrt2-pi-in-frac1-sigma-sqrt%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Tamil (spriik) Luke uk diar | Nawigatjuun

                      Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

                      Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?