When to use the root test. Is this not a good situation to use it? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Which test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.
US Healthcare consultation for visitors
how can a perfect fourth interval be considered either consonant or dissonant?
Can we generate random numbers using irrational numbers like π and e?
Is every episode of "Where are my Pants?" identical?
Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?
Circular reasoning in L'Hopital's rule
What was the last x86 CPU that did not have the x87 floating-point unit built in?
Example of compact Riemannian manifold with only one geodesic.
Keeping a retro style to sci-fi spaceships?
What aspect of planet Earth must be changed to prevent the industrial revolution?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Word to describe a time interval
Python - Fishing Simulator
Variable with quotation marks "$()"
What do I do when my TA workload is more than expected?
One-dimensional Japanese puzzle
How to support a colleague who finds meetings extremely tiring?
How to handle characters who are more educated than the author?
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
different output for groups and groups USERNAME after adding a username to a group
Could an empire control the whole planet with today's comunication methods?
What is the padding with red substance inside of steak packaging?
Student Loan from years ago pops up and is taking my salary
Is an up-to-date browser secure on an out-of-date OS?
When to use the root test. Is this not a good situation to use it?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Which test would be appropriate to use on this series to show convergence/divergence?Integral test vs root test vs ratio testHow to show convergence or divergence of a series when the ratio test is inconclusive?Root test with nested power function?Confused about using alternating test, ratio test, and root test (please help).Radius and interval of convergence of $sum_n=1^infty(-1)^nfracx^2n(2n)!$ by root and ratio test are different?How would I use root/ratio test on $sum_n=1^inftyleft(fracnn+1right)^n^2$?How would I know when to use what test for convergence?convergence of a sum fails with root testIntuition for Root Test.
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
$endgroup$
I'm having trouble seeing when to use the root test. nth powers occur, but I think the ratio test is easier:
Here is the problem:
$$sum_n=1^infty fracx^nn^44^n$$
So the ratio test seems to work here, but can't the root test be used to? The problem is that the $n^4$ doesnt play well with the root test right?
Here is the beginning of my solution with the ratio test:
$$biggr lbrack fraca_n+1a_n biggr rbrack = biggr lbrack fracx^n+1(n+1)^4 * 4^n+1 * fracn^4*4^nx^n biggr rbrack = biggr lbrack fracx*n^4(n+1)^4 * 4 biggr rbrack = fracx4$$
So I don't think the explanation for when to use the root test is totally right right? I can't really use it here because the $n^4$ causes some problems with the root test right?
sequences-and-series
sequences-and-series
asked Apr 10 at 2:43
Jwan622Jwan622
2,39011632
2,39011632
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
add a comment |
$begingroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
$endgroup$
When doing a root test,
powers of $n$ can be ignored
because,
for any fixed $k$,
$lim_n to infty (n^k)^1/n
=1
$.
This is because
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
$
and
$lim_n to infty fracln(n)n
=0$.
An easy,
but nonelementary proof of this is this:
$beginarray\
ln(n)
&=int_1^n dfracdtt\
&<int_1^n dfracdtt^1/2\
&=2t^1/2|_1^n\
< 2sqrtn\
textso\
dfracln(n)n
&<dfrac2sqrtn\
endarray
$
Therefore
$ (n^k)^1/n
=n^k/n
=e^k ln(n)/n
lt e^2k/sqrtn
to 1
$.
answered Apr 10 at 3:32
marty cohenmarty cohen
75.4k549130
75.4k549130
add a comment |
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
add a comment |
$begingroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
$endgroup$
It doesn't cause any problems, because $lim_ntoinftysqrt[n]n^4=1.$ Actually, the root test is stronger than the ratio test. Sometimes the root test limit exists, but the ratio test limit does not. However, if they both exist, then they are equal. Which is why if one limit is $1$ you shouldn't try the other, even though the root test is stronger.
answered Apr 10 at 3:00
MelodyMelody
1,10412
1,10412
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181802%2fwhen-to-use-the-root-test-is-this-not-a-good-situation-to-use-it%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown