Writing operators in the position basisWhat is the physical interpretation of the density matrix in a double continuous basis $|alpharangle$, $|betarangle$?Matrix elements of the operator $hatx hatp$ in position and momentum basisCommutation relation of position and momentum using Dirac notationWhat's the correct link between Dirac notation and wave mechanics integrals?Definitions of position operator in QMMomentum operator in position basisCorrespondence between integral transformations and differential operators in quantum mechanicsTaking the Hamiltonian eigenvalue problem into position space?

Why is JavaScript not compiled to bytecode before sending over the network?

How can I unscrew the faucet nuts in the tight space behind my sink basin?

Elliptic Integrals: Mathematica and Gradshteyn and Ryzhik

Fourier transform is an isomorphism...but we don’t get when each frequency appears?

Expectation of 500 coin flips after 500 realizations

How should I analyze this passage? As vii°7, V7, or both?

Besides TGV train, how can I travel around France from Paris area during a strike?

Was there really a shuttle toilet training device with a "boresight camera"?

What is a logic gate?

Switching the position of brake levers for a bike ordered from another country

How am I ever going to be able to "vet" 120,000+ lines of Composer PHP code not written by me?

I shift the source code, you shift the input!

Is it possible to duplicate an item in Stardew Valley?

Who is the narrator of Star Wars?

Monthly budget screen - need to take into account whether it's early/late in the month

Smallest Fibonacci Multiples

As a post-doc applicant, should I address a professor by their first name in email after they addressed me that way?

Toy Vector Library - Magnitude & Unit Vector Functions

Why did Bayer lose aspirin and heroin trademarks under the 1919 Treaty of Versailles?

Any real contribution of functional analysis to quantum theory as a branch of physics?

Why do some AFBs have planes parked at 45 degrees to others?

How to teach children Santa is not real, while respecting other kids beliefs?

How does divination manifest for spells such as Scrying?

Why is "runway behind you" useless?



Writing operators in the position basis


What is the physical interpretation of the density matrix in a double continuous basis $|alpharangle$, $|betarangle$?Matrix elements of the operator $hatx hatp$ in position and momentum basisCommutation relation of position and momentum using Dirac notationWhat's the correct link between Dirac notation and wave mechanics integrals?Definitions of position operator in QMMomentum operator in position basisCorrespondence between integral transformations and differential operators in quantum mechanicsTaking the Hamiltonian eigenvalue problem into position space?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;









4















$begingroup$


To calculate an expecation value in quantum mechanics of some operator $hat A$ you can generally write it in Dirac notation
$$langle hat Arangle=langlepsi|hat A|psirangle.$$
In the position basis this becomes the following integral:
$$int mathrm dx psi^*(x)A(x)psi(x).$$
But when I try to derive this explicitly from Dirac notation I get
beginalignlanglepsi|hat A|psirangle
&=langlepsi|left(int mathrmdx|xranglelangle x|right)hat Aleft(int mathrmdx'|x'ranglelangle x'|right)|psirangle\
&=int mathrmdx mathrmdx'langlepsi|xranglelangle x|hat A|x'ranglelangle x|psirangle\
&=int mathrmdx mathrmdx' psi^*(x),langle x|hat A|x'rangle,psi(x').
endalign

The reason I'm stuck is that I don't remember ever calculating the matrix elements in the position basis. How do you calculate these matrix elements in the position basis (or more generally in any basis)?










share|cite|improve this question











$endgroup$





















    4















    $begingroup$


    To calculate an expecation value in quantum mechanics of some operator $hat A$ you can generally write it in Dirac notation
    $$langle hat Arangle=langlepsi|hat A|psirangle.$$
    In the position basis this becomes the following integral:
    $$int mathrm dx psi^*(x)A(x)psi(x).$$
    But when I try to derive this explicitly from Dirac notation I get
    beginalignlanglepsi|hat A|psirangle
    &=langlepsi|left(int mathrmdx|xranglelangle x|right)hat Aleft(int mathrmdx'|x'ranglelangle x'|right)|psirangle\
    &=int mathrmdx mathrmdx'langlepsi|xranglelangle x|hat A|x'ranglelangle x|psirangle\
    &=int mathrmdx mathrmdx' psi^*(x),langle x|hat A|x'rangle,psi(x').
    endalign

    The reason I'm stuck is that I don't remember ever calculating the matrix elements in the position basis. How do you calculate these matrix elements in the position basis (or more generally in any basis)?










    share|cite|improve this question











    $endgroup$

















      4













      4









      4


      1



      $begingroup$


      To calculate an expecation value in quantum mechanics of some operator $hat A$ you can generally write it in Dirac notation
      $$langle hat Arangle=langlepsi|hat A|psirangle.$$
      In the position basis this becomes the following integral:
      $$int mathrm dx psi^*(x)A(x)psi(x).$$
      But when I try to derive this explicitly from Dirac notation I get
      beginalignlanglepsi|hat A|psirangle
      &=langlepsi|left(int mathrmdx|xranglelangle x|right)hat Aleft(int mathrmdx'|x'ranglelangle x'|right)|psirangle\
      &=int mathrmdx mathrmdx'langlepsi|xranglelangle x|hat A|x'ranglelangle x|psirangle\
      &=int mathrmdx mathrmdx' psi^*(x),langle x|hat A|x'rangle,psi(x').
      endalign

      The reason I'm stuck is that I don't remember ever calculating the matrix elements in the position basis. How do you calculate these matrix elements in the position basis (or more generally in any basis)?










      share|cite|improve this question











      $endgroup$




      To calculate an expecation value in quantum mechanics of some operator $hat A$ you can generally write it in Dirac notation
      $$langle hat Arangle=langlepsi|hat A|psirangle.$$
      In the position basis this becomes the following integral:
      $$int mathrm dx psi^*(x)A(x)psi(x).$$
      But when I try to derive this explicitly from Dirac notation I get
      beginalignlanglepsi|hat A|psirangle
      &=langlepsi|left(int mathrmdx|xranglelangle x|right)hat Aleft(int mathrmdx'|x'ranglelangle x'|right)|psirangle\
      &=int mathrmdx mathrmdx'langlepsi|xranglelangle x|hat A|x'ranglelangle x|psirangle\
      &=int mathrmdx mathrmdx' psi^*(x),langle x|hat A|x'rangle,psi(x').
      endalign

      The reason I'm stuck is that I don't remember ever calculating the matrix elements in the position basis. How do you calculate these matrix elements in the position basis (or more generally in any basis)?







      quantum-mechanics hilbert-space operators wavefunction






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 30 at 16:05









      Qmechanic

      118k14 gold badges238 silver badges1409 bronze badges




      118k14 gold badges238 silver badges1409 bronze badges










      asked Sep 29 at 23:03









      AccidentalTaylorExpansionAccidentalTaylorExpansion

      2,68711 silver badges21 bronze badges




      2,68711 silver badges21 bronze badges























          1 Answer
          1






          active

          oldest

          votes


















          9

















          $begingroup$

          In order to calculate the matrix elements of an operator, you need to know how the operator acts on the basis states. This is usually something that you're given (because it's almost always how an operator is defined in the first place - by its action on basis states). So, if you want to calculate the matrix elements, you need at least that much information (which can be provided directly, or in shorthand using the operator's position-space representation described below).



          If $hatA$ happens to have every $|xrangle$ basis state as an eigenstate, then you can write $hatA|xrangle=A(x)|xrangle$, where $A(x)$ is the operator's position-basis representation. Then you can say that $langle x'|hatA|xrangle=A(x)langle x'|xrangle=A(x)delta(x-x')$. For example, for the simple-harmonic-oscillator potential operator $hatA=kappahatx^2$, we have that $langle x'|hatA|xrangle=kappa x^2delta(x-x')$.



          This condition is not necessarily true in general, though, and there are many operators which simply don't have a nice position-space representation like this. My favorite example is the position translation operator $hatT_a$. The action of this operator on the basis states is defined to be as follows: $hatT_a|xrangle=|x+arangle$. As you can see, this operator has none of the position basis states as eigenstates! So the matrix element will look slightly different:



          $$langle x'|hatT_a|xrangle=langle x'|x+arangle=delta(x+a-x')$$



          which you'll notice doesn't conform to the structure $A(x)delta(x-x')$.






          share|cite|improve this answer










          $endgroup$













          • $begingroup$
            You are absolutely right. I deleted my answer.
            $endgroup$
            – Dani
            Sep 29 at 23:34










          • $begingroup$
            Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
            $endgroup$
            – AccidentalTaylorExpansion
            Sep 30 at 11:54











          • $begingroup$
            @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
            $endgroup$
            – probably_someone
            Sep 30 at 14:08













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );














          draft saved

          draft discarded
















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f505471%2fwriting-operators-in-the-position-basis%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown


























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9

















          $begingroup$

          In order to calculate the matrix elements of an operator, you need to know how the operator acts on the basis states. This is usually something that you're given (because it's almost always how an operator is defined in the first place - by its action on basis states). So, if you want to calculate the matrix elements, you need at least that much information (which can be provided directly, or in shorthand using the operator's position-space representation described below).



          If $hatA$ happens to have every $|xrangle$ basis state as an eigenstate, then you can write $hatA|xrangle=A(x)|xrangle$, where $A(x)$ is the operator's position-basis representation. Then you can say that $langle x'|hatA|xrangle=A(x)langle x'|xrangle=A(x)delta(x-x')$. For example, for the simple-harmonic-oscillator potential operator $hatA=kappahatx^2$, we have that $langle x'|hatA|xrangle=kappa x^2delta(x-x')$.



          This condition is not necessarily true in general, though, and there are many operators which simply don't have a nice position-space representation like this. My favorite example is the position translation operator $hatT_a$. The action of this operator on the basis states is defined to be as follows: $hatT_a|xrangle=|x+arangle$. As you can see, this operator has none of the position basis states as eigenstates! So the matrix element will look slightly different:



          $$langle x'|hatT_a|xrangle=langle x'|x+arangle=delta(x+a-x')$$



          which you'll notice doesn't conform to the structure $A(x)delta(x-x')$.






          share|cite|improve this answer










          $endgroup$













          • $begingroup$
            You are absolutely right. I deleted my answer.
            $endgroup$
            – Dani
            Sep 29 at 23:34










          • $begingroup$
            Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
            $endgroup$
            – AccidentalTaylorExpansion
            Sep 30 at 11:54











          • $begingroup$
            @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
            $endgroup$
            – probably_someone
            Sep 30 at 14:08
















          9

















          $begingroup$

          In order to calculate the matrix elements of an operator, you need to know how the operator acts on the basis states. This is usually something that you're given (because it's almost always how an operator is defined in the first place - by its action on basis states). So, if you want to calculate the matrix elements, you need at least that much information (which can be provided directly, or in shorthand using the operator's position-space representation described below).



          If $hatA$ happens to have every $|xrangle$ basis state as an eigenstate, then you can write $hatA|xrangle=A(x)|xrangle$, where $A(x)$ is the operator's position-basis representation. Then you can say that $langle x'|hatA|xrangle=A(x)langle x'|xrangle=A(x)delta(x-x')$. For example, for the simple-harmonic-oscillator potential operator $hatA=kappahatx^2$, we have that $langle x'|hatA|xrangle=kappa x^2delta(x-x')$.



          This condition is not necessarily true in general, though, and there are many operators which simply don't have a nice position-space representation like this. My favorite example is the position translation operator $hatT_a$. The action of this operator on the basis states is defined to be as follows: $hatT_a|xrangle=|x+arangle$. As you can see, this operator has none of the position basis states as eigenstates! So the matrix element will look slightly different:



          $$langle x'|hatT_a|xrangle=langle x'|x+arangle=delta(x+a-x')$$



          which you'll notice doesn't conform to the structure $A(x)delta(x-x')$.






          share|cite|improve this answer










          $endgroup$













          • $begingroup$
            You are absolutely right. I deleted my answer.
            $endgroup$
            – Dani
            Sep 29 at 23:34










          • $begingroup$
            Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
            $endgroup$
            – AccidentalTaylorExpansion
            Sep 30 at 11:54











          • $begingroup$
            @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
            $endgroup$
            – probably_someone
            Sep 30 at 14:08














          9















          9











          9







          $begingroup$

          In order to calculate the matrix elements of an operator, you need to know how the operator acts on the basis states. This is usually something that you're given (because it's almost always how an operator is defined in the first place - by its action on basis states). So, if you want to calculate the matrix elements, you need at least that much information (which can be provided directly, or in shorthand using the operator's position-space representation described below).



          If $hatA$ happens to have every $|xrangle$ basis state as an eigenstate, then you can write $hatA|xrangle=A(x)|xrangle$, where $A(x)$ is the operator's position-basis representation. Then you can say that $langle x'|hatA|xrangle=A(x)langle x'|xrangle=A(x)delta(x-x')$. For example, for the simple-harmonic-oscillator potential operator $hatA=kappahatx^2$, we have that $langle x'|hatA|xrangle=kappa x^2delta(x-x')$.



          This condition is not necessarily true in general, though, and there are many operators which simply don't have a nice position-space representation like this. My favorite example is the position translation operator $hatT_a$. The action of this operator on the basis states is defined to be as follows: $hatT_a|xrangle=|x+arangle$. As you can see, this operator has none of the position basis states as eigenstates! So the matrix element will look slightly different:



          $$langle x'|hatT_a|xrangle=langle x'|x+arangle=delta(x+a-x')$$



          which you'll notice doesn't conform to the structure $A(x)delta(x-x')$.






          share|cite|improve this answer










          $endgroup$



          In order to calculate the matrix elements of an operator, you need to know how the operator acts on the basis states. This is usually something that you're given (because it's almost always how an operator is defined in the first place - by its action on basis states). So, if you want to calculate the matrix elements, you need at least that much information (which can be provided directly, or in shorthand using the operator's position-space representation described below).



          If $hatA$ happens to have every $|xrangle$ basis state as an eigenstate, then you can write $hatA|xrangle=A(x)|xrangle$, where $A(x)$ is the operator's position-basis representation. Then you can say that $langle x'|hatA|xrangle=A(x)langle x'|xrangle=A(x)delta(x-x')$. For example, for the simple-harmonic-oscillator potential operator $hatA=kappahatx^2$, we have that $langle x'|hatA|xrangle=kappa x^2delta(x-x')$.



          This condition is not necessarily true in general, though, and there are many operators which simply don't have a nice position-space representation like this. My favorite example is the position translation operator $hatT_a$. The action of this operator on the basis states is defined to be as follows: $hatT_a|xrangle=|x+arangle$. As you can see, this operator has none of the position basis states as eigenstates! So the matrix element will look slightly different:



          $$langle x'|hatT_a|xrangle=langle x'|x+arangle=delta(x+a-x')$$



          which you'll notice doesn't conform to the structure $A(x)delta(x-x')$.







          share|cite|improve this answer













          share|cite|improve this answer




          share|cite|improve this answer










          answered Sep 29 at 23:26









          probably_someoneprobably_someone

          25.2k1 gold badge37 silver badges76 bronze badges




          25.2k1 gold badge37 silver badges76 bronze badges














          • $begingroup$
            You are absolutely right. I deleted my answer.
            $endgroup$
            – Dani
            Sep 29 at 23:34










          • $begingroup$
            Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
            $endgroup$
            – AccidentalTaylorExpansion
            Sep 30 at 11:54











          • $begingroup$
            @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
            $endgroup$
            – probably_someone
            Sep 30 at 14:08

















          • $begingroup$
            You are absolutely right. I deleted my answer.
            $endgroup$
            – Dani
            Sep 29 at 23:34










          • $begingroup$
            Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
            $endgroup$
            – AccidentalTaylorExpansion
            Sep 30 at 11:54











          • $begingroup$
            @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
            $endgroup$
            – probably_someone
            Sep 30 at 14:08
















          $begingroup$
          You are absolutely right. I deleted my answer.
          $endgroup$
          – Dani
          Sep 29 at 23:34




          $begingroup$
          You are absolutely right. I deleted my answer.
          $endgroup$
          – Dani
          Sep 29 at 23:34












          $begingroup$
          Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
          $endgroup$
          – AccidentalTaylorExpansion
          Sep 30 at 11:54





          $begingroup$
          Does that mean that $langlehat Arangle=int mathrm dx psi^*(x)A(x)psi(x)$ is not generally true? Would this be true for the (usual) Hamoltonian operator $hat H=hat p^2/(2m)+hat V$?
          $endgroup$
          – AccidentalTaylorExpansion
          Sep 30 at 11:54













          $begingroup$
          @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
          $endgroup$
          – probably_someone
          Sep 30 at 14:08





          $begingroup$
          @user3502079 It depends on whether or not you consider $A(x)$ to be a function (which yields a number) or a functional (a function which acts on other functions, for example $A(x)=fracpartialpartial x$). If $A(x)$ is a function, then no, you have $langle hatp^2rangle=int dx psi^*(x)hbar^2fracpartial^2psipartial x^2(x)$. If $A(x)$ is a functional, then you can declare $A(x)=hbar^2fracpartial^2partial x^2$.
          $endgroup$
          – probably_someone
          Sep 30 at 14:08



















          draft saved

          draft discarded















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f505471%2fwriting-operators-in-the-position-basis%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown









          Popular posts from this blog

          Tamil (spriik) Luke uk diar | Nawigatjuun

          Align equal signs while including text over equalitiesAMS align: left aligned text/math plus multicolumn alignmentMultiple alignmentsAligning equations in multiple placesNumbering and aligning an equation with multiple columnsHow to align one equation with another multline equationUsing \ in environments inside the begintabularxNumber equations and preserving alignment of equal signsHow can I align equations to the left and to the right?Double equation alignment problem within align enviromentAligned within align: Why are they right-aligned?

          Training a classifier when some of the features are unknownWhy does Gradient Boosting regression predict negative values when there are no negative y-values in my training set?How to improve an existing (trained) classifier?What is effect when I set up some self defined predisctor variables?Why Matlab neural network classification returns decimal values on prediction dataset?Fitting and transforming text data in training, testing, and validation setsHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I control for some patients providing multiple samples in my training data?Training and Test setTraining a convolutional neural network for image denoising in MatlabShouldn't an autoencoder with #(neurons in hidden layer) = #(neurons in input layer) be “perfect”?